The Road to Welding Automation: Are You Ready? | MillerWelds

The Road to Welding Automation: Are You Ready to Take the Journey?

Print Article
Thinking about investing in welding automation? Learn the benefits and steps to take to successfully automate your operation.
Automated welding cell
welding automation operation

Achieve welding automation success

Today, more companies than ever are automating portions, if not the entirety of their welding operations. The reasons are many: to address the welder shortage, improve quality, decrease waste and rework, and/or to increase productivity. Not all companies that attempt welding automation, however, are successful. In fact, those without a roadmap are risking valuable time and investments and can miss the full benefits of automation.

On the other hand, companies that begin with a careful examination of their welding needs and current processes—including an accurate assessment of workflow and an evaluation of the potential return on investment (ROI) – and develop a detailed plan with clearly established goals are likely to achieve welding automation success.

What’s the benefit of an automated welding system?

On average, labor accounts for approximately 70% of any welded part’s cost. Automation can reduce that cost, as a welding robot can typically do the work of two to four people. Companies cannot, however, simply purchase an automated welding system and let it go. A skilled welding operator must program the equipment, which may involve additional training to upgrade their skill sets. It may also require alleviating them of some existing tasks.

With the right automated welding system, a company can significantly improve first-pass weld quality and reduce the need for scrapping or reworking parts. It can also minimize or eliminate spatter, reducing the need to apply anti-spatter or perform post-weld clean up — both labor-intensive processes. Plus, if a company currently has personnel applying anti-spatter, it may free up that manpower for more productive uses elsewhere.

An automated welding system can reduce over-welding, a common and costly occurrence associated with the semi-automatic process. For example, if a company has welding operators who weld a bead that is 1/8-inch too large on every pass, it can potentially double the cost of welding (both for labor and for filler metals), and over-welding may adversely affect the integrity of the part. Automation can prevent this problem.

Finally, robotic welding is fast. They don’t have to weld all day to be profitable; they only have be faster than a manual welding operator — and they do. That fact increases productivity, and creating the same number of parts in a shorter time also decreases labor costs and raises profitability.

You may be thinking, “How can our company automate?” but you'll need to answer a few questions first.

Repeatability for automated welding systems

One of the first things to ask when considering welding automation is this: “Does the company have a blueprint, preferably an electronic blueprint, of its parts?” If it doesn’t, it probably won’t meet the basic criterion necessary to ensure the part is repeatable, and repeatability is the key to automation.

An automated welding system, whether robotic or fixed, needs to weld in the same place every time. If a part’s design can't hold its tolerances – if there are gap and/or fit-up issues – the company will simply be automating a broken process. This can lead to increased rework and scrap.

If a company currently relies on its welders to compensate for fit-up issues, it will need to look upstream to ensure consistency. What processes will need to change to make sure welding operators send down uniform parts? Or, if vendors supply the components, can they guarantee that consistency?

Robotics or fixed automation?

There is no single automated welding system that is best for every company. The best solution will depend on many factors. These include the expected lifetime of the job, the cost of tooling involved and the flexibility offered.

Fixed automation is the most efficient and cost-effective way to weld certain components. These include those requiring simple repetitive straight welds or round welds, where operations rotate the part on a lathe. For a company that wants to redeploy the asset when the current job ends, however, a robotic welding system offers more flexibility. A welding robot can also hold programs for multiple jobs. Therefore, depending on volume, it may be able to handle the tasks of several fixed-automation systems.

There is a certain volume of parts that will justify the investment of automation for each company. An accurate assessment of goals and workflow can help determine what that volume is. If a company makes only small runs of parts, automation becomes more challenging. If, however, a company can identify two or three components that can be automated, a welding robot that can be programmed to recognize those parts can offer greater flexibility and may benefit even small fabricators who may not have significant volume of a single part.

Although robotic welding is more expensive than a fixed-automation system, consider the cost of the necessary tooling before picking one. Fixed welding automation systems can become quite expensive if it requires extensive changes to retool a part to ensure it can be welded consistently.

Ready for welding automation?

A streamlined workflow is one of automation’s benefits. To achieve this, look beyond the weld cell to ensure your facility can accommodate a smooth flow of materials. It would make little sense, for instance, to invest in an automated welding system to increase your productivity and then place it in a corner where each part has to be handled twice.

Companies should have a dependable supply of parts in order to avoid moving a bottleneck from one area to another. They should also look at the expected cycle time of the welding robot. Can personnel supply parts to keep up with the demand of the automated welding system’s cycle time? If not, you'll need to adjust the supply of parts, including where they're stored and how they're moved, for successful automation. Otherwise, a welding robot will sit idle waiting for components to come down the line. This is a costly and counterproductive state for a company to find its welding automation system.

Companies need to have the right power and gas systems or factor in the cost of implementing these systems. To move to welding automation, a facility needs a 480-volt, three-phase power supply, as well as bulk delivery of gas and wire. A gas manifold system may add to the initial cost, but will minimize downtime for changing gas cylinders in the long run.

Determining who will oversee the welding automation system and providing training is also essential. Most robotic welding OEMs offer a weeklong training course explaining how to operate the equipment. Experts recommend this course, followed by a week of advanced programming.

Because there is more to welding automation than simply purchasing a welding robot, partnering with a competent integrator or automation specialist can help ensure success.

What will a welding automation specialist do for you? 

  • Help determine if parts are suitable for automation, and, if not, what is required to make them suitable.
  • Analyze the workflow and facility to identify potential roadblocks.
  • Analyze the true costs involved, including facility updates and tooling.
  • Determine the potential payback of the automation investment.
  • Help identify goals and develop a precise plan and timetable to achieve those goals.
  • Explain automation options and help select those that best fit the company’s needs.
  • Help select a welding power source that has the flexibility to maximize travel speed, minimize spatter, eliminate over-welding, provide great arc starting characteristics and increase first-pass weld quality.

Remember, there is no single path to successful welding automation. Still, a well-thought-out plan that includes accurate evaluations is a good start to the journey.