

Generator Power Application Guide

Why buy just a generator when you can buy a generator that also welds?

Your best value for power is a Miller welder/AC generator because it...

- Includes a welder to do your own welding repairs.
- Features fuel–efficient engines and 12–gallon tanks for longer run times.
- Generates up to 12,000 watts of Accu–Rated[™] not inflated generator power.
- Built to the highest standards and has a three year warranty.

Welder/AC Generator: Best Value For Power Needs

While you might not need a generator or welder for daily use, investing in a machine that performs both duties makes economic sense.

Like a "regular" generator, a Miller welder/AC generator provides 120/240 volts AC generator power. The 4,500 to 12,000 watt output capability of Miller's mid-size generators is also suitable for home use.

What are the biggest benefits to a Miller welder/AC generator?

- At about the same cost as a "regular" generator, Miller generators are also excellent welding power sources capable of welding material up to 1/2 in. thick or more.
- Miller's 3-year, True Blue[®] Total Parts warranty is longer than typical 1-year, generator warranties.
- Low Fuel Consumption The Bobcat will run about 14 hours under a continuous load of 4000 watts of generator power. Weld at 150 Amps at 40% duty cycle for 16 hours!
- Accu-Rated[™] Miller generators means they deliver the power that is

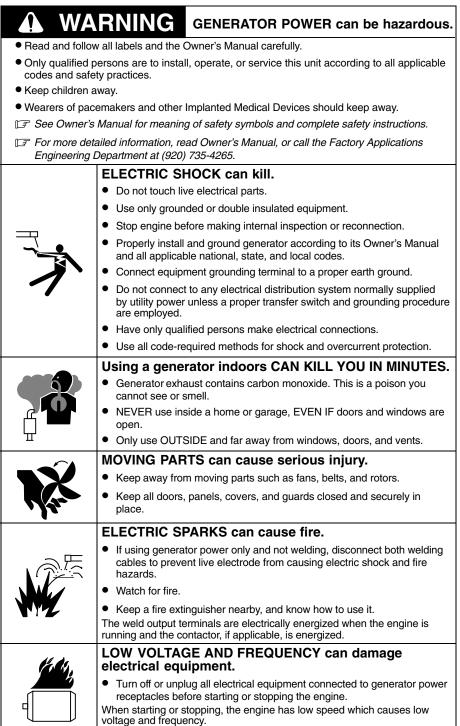

promised. Patented self-cooling stator allows Miller generators to perform at 100% duty cycle, even in 104°F heat! And the Bobcat's skewed rotor helps provide smoother power than other brands.

Table Of Contents

1.	Safety	1
2.	How Much Generator Power Do You Need?	2
3.	Wattage Reference Guide	3
4.	Frequently Asked Questions	4
5.	Selecting Generator Equipment	5
6.	Grounding Generator To Truck Or Trailer Frame	5
7.	Grounding When Supplying Building Systems	6
8.	GFCI Receptacle Testing and Resetting	7
9.	Power Required To Start A Motor	8
10.	How Much Power Can The Generator Supply?	8
11.	Typical Connections To Supply Standby Power	9
12.	Wiring Optional 240 Volt, Single-Phase Plug (NEMA 14-50P)	10
13.	Selecting Extension Cord (Use Shortest Cord Possible)	11

1. Safety

2. How Much Generator Power Do You Need?

EXAMPLE					
TOOL OR APPLIANCE	Column A STARTING WATTS	Column B RUNNING WATTS	Column C ADDITIONAL STARTING WATTS		
. Refrigerator	2,200	700	1,500		
Sump Pump	1,300	800	500		
. Table Saw	6,300	1,800	(4,500) -		
TOTAL RUNN	IING WATTS =	3,300	4,500 HIGHEST ADDITIONAL		
a generator at least 3,30	mple you need that produces 0 total running 300 total watts				
		тс	TAL WATTS NE		
	WORKSHI	-	DTAL WATTS NE		
	WORKSHI Column A	-	TAL WATTS NE		
EXAMPLE		EET			
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
TOOL OR APPLIANCE	Column A STARTING	EET Column B RUNNING	Column C ADDITIONAL STARTING		
TOOL OR APPLIANCE	Column A STARTING WATTS	Column B RUNNING WATTS	Column C ADDITIONAL STARTING		
EXAMPLE TOOL OR APPLIANCE	Column A STARTING WATTS	Column B RUNNING WATTS	Column C ADDITIONAL STARTING WATTS = 		

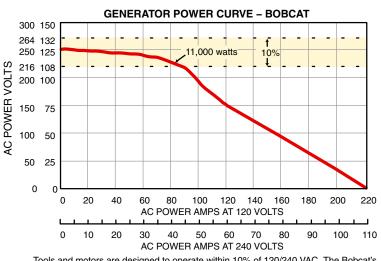
Use this easy reference to determine the generator size vou need. To select a generator with enough power output in watts, add the watts for the items you want to simultaneously run. Tools and appliances with induction motors may require 3-7 times the listed wattage when starting. All data listed is approximate-check your tool/appliance for specific wattage requirements. Your actual requirements will vary (see Sections 4 and 7).

This worksheet will focus on determining your starting and running watt needs.

Amount of generator power you need depends on your power requirements. Generally, a higher-wattage generator lets you power more items at once.

- 1 Select the items you wish to power at the same time. Using the chart in Section 3, fill in the starting watts (Column A) and running watts (Column B) requirements.
- 2 Add all the items in the RUNNING WATTS column (Column B) to determine total running watts. Enter the total in the TOTAL RUNNING WATTS boxes.
- 3 Subtract RUNNING WATTS (Column B) from STARTING WATTS (Column A). Enter the results in the ADDITIONAL STARTING WATTS column (Column C). Select the ONE INDIVIDUAL ITEM with the highest number of ADDITIONAL STARTING WATTS. Take this ONE NUMBER, add it to your TOTAL RUNNING WATTS, and enter the total in the TOTAL WATTS NFFDFD box.

3. Wattage Reference Guide


HOUSEHOLD						
Appliances	Starting Watts	Running Watts				
Dishwasher (cool dry)	1,400	700				
Electric Range (6-inch element)	0	1,500				
Microwave Oven (625 watts)	800	625				
Refrigerator or Freezer	2,200	700				
Automatic Washer	2,300	1,150				
Clothes Dryer (gas / electric)	1,800 / 1,800	700 / 5,750				
Garage Door Opener (1/4 HP)	1,100	550				
Furnace Fan, Gas or Fuel Oil (1/4 HP)	1,000	600				
Well Pump (1/3 HP)	1,400	750				
Sump Pump (1/3 HP)	1,300	800				
Central Air Conditioner (20,000 BTU)	3,300	2,500				
CONTRACTOR TOO	LS					
Tool	Starting Watts	Running Watts				
Hand Drill (1/2 in.)	600	600				
Circular Saw (8-1/4 in.)	1,400	1,400				
Table Saw (10 in.)	6,300	1,800				
Band Saw (14 in.)	2,500	1,100				
Air Compressor (1-1/2 HP)	8,200	2,200				
Electric Chain Saw (2 HP, 14 in.)	1,100	1,100				
Spectrum [®] 625 Plasma Cutter (30 amp, 230 volts, 1/2 in. cut)	3,500	3,500				
Millermatic [®] 212 MIG Welder (30–210 amps, 230 volt)	6,500	6,500				
Flood Lights (vapor)	1,250	1,000				
Submersible Pump (400 GPH)	600	200				
Centrifugal Pump (900 GPH)	900	500				
High Pressure Washer (1 HP)	6,100	1,600				
Wet & Dry VAC (1.7 HP)	900	900				
FARM EQUIPMENT	-					
Machine	Starting Watts	Running Watts				
Barn Cleaner (5 HP)	11,600	3,000				
Silo Unloader	12,200	4,300				
Portable Conveyer (1/2 HP)	3,400	1,000				
Milker, Vacuum Pump (2 HP)	10,500	2,800				
Farm Duty Motors—Conveyers, Feed Augers, Air Compressors, Etc. (1-1/2 HP)	8,200	2,200				
Washer, 2 gal/min (550 PSI)	4,500	1,400				
INDUSTRIAL MOTORS						
Motor	Starting Watts	Running Watts				
Split Phase (1/2 HP)	3,175	875				
Capacitor Start, Induction Run (1-1/2 HP)	8,200	2,200				
Capacitor Start, Capacitor Run (1-1/2 HP)	8,100	2,000				

4. Frequently Asked Questions

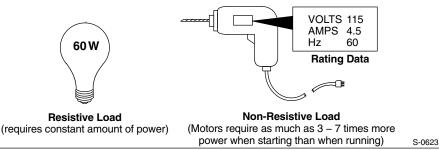
How many watts does it take to power basic items in an average size house? In a typical home, essential items use about 4000 – 6000 watts of power. Select a generator that can provide the necessary power while maintaining rated voltage. Low volt-

age may damage appliances and other equipment (see power curve example below).

Tools and motors are designed to operate within 10% of 120/240 VAC. The Bobcat's power generator provides strong power while keeping the voltage within 10% of 120/240 VAC. This increases tool/motor performance and life.

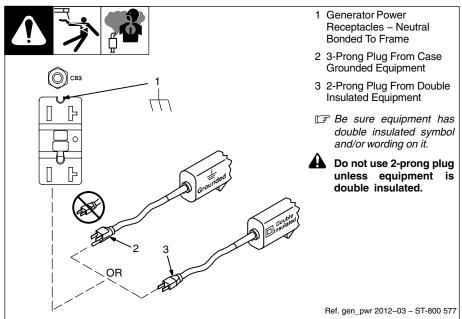
What is the difference between running watts and starting watts?

Running watts are the continuous watts needed to keep items running. Starting watts are extra watts needed for two to three seconds to start motor-driven products like a refrigerator or circular saw.

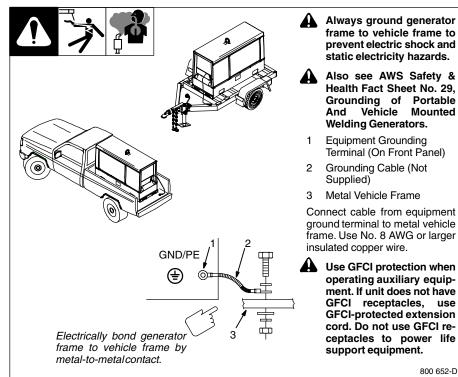

Why is only one additional starting watt item used to calculate your total watt requirement?

Unlike running watts, starting watts are only needed during the first few seconds of operation. In most cases, only one item will start or cycle at the same time, therefore this is the most accurate estimate.

What if I can't determine the running or the starting watt requirement for a tool or appliance?

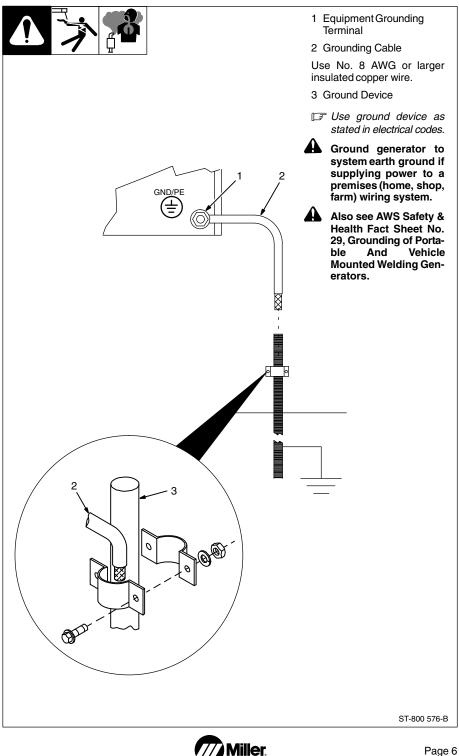

If the running watts are not on the tool or appliance, you may estimate using the following equation: WATTS = VOLTS x AMPS.

Only motor-driven items will have an additional starting requirement. The additional starting watts required in most cases may be estimated at 3 – 7 times the rated running watts.

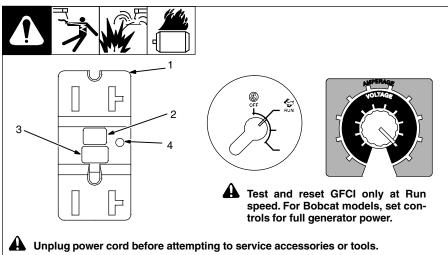


Selecting Generator Equipment 5.

Grounding Generator To Truck Or Trailer Frame 6.



use


Mounted

Grounding When Supplying Building Systems 7.

8. GFCI Receptacle Testing and Resetting

Test GFCI monthly. See Testing GFCI Receptacle.

Do not test or reset GFCI receptacles at idle speed/low voltage or the GFCI will be damaged and not provide protection from electric shock caused by a ground fault.

If LED blinks, stop using GFCI receptacle and have it replaced by a Factory Authorized Service Agent.

Test GFCI Receptacle

Start engine and operate at Run (weld/power) speed. Set front panel amperage controls at Max to achieve full generator power (Bobcat models).

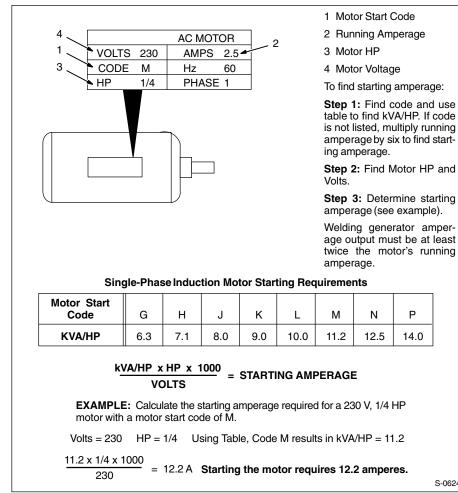
Press the GFCI Test button. The GFCI Reset button should pop out. Press the GFCI Reset button.

Have GFCI replaced by a Factory Authorized Service Agent if any of the following occur: GFCI does not trip when tested LED blinks GFCI does not reset.

Reset GFCI Receptacle

If GFCI receptacle fails to reset, stop engine and disconnect equipment from GFCI receptacle. Check for damaged or wet tools, cords, plugs, etc. connected to the receptacle. Start engine and operate at Run (weld/power) speed. Set front panel amperage controls at Max on Bobcat models to achieve full generator power (Bobcat models). Press GFCI Reset button. Reconnect equipment to GFCI receptacle. If GFCI Reset button pops out again, check the equipment and repair or replace if faulty.

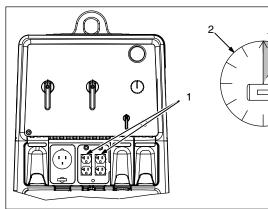
GFCI Receptacles


- 1 120 V 20 A AC GFCI Receptacle
- 2 GFCI Receptacle Test Button
- 3 GFCI Receptacle Reset Button
- 4 GFCI Indicator Light (LED)

GFCI receptacles protect the user from electric shock if a ground fault occurs in equipment connected to the receptacle. A ground fault occurs when electrical current takes the shortest path to ground (which could be through a person) rather than follow its intended safe path.

If a ground fault is detected, the GFCI Reset button pops out, and the circuit opens to disconnect power to the faulty equipment. A GFCI receptacle does not protect against circuit overloads, short circuits, or shocks not related to ground faults.

9. **Power Required To Start A Motor**



S-0624

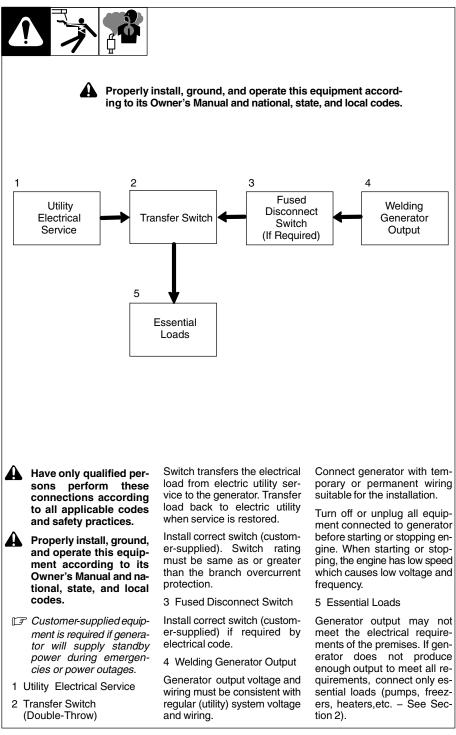
Ρ

14.0

10. How Much Power Can The Generator Supply?

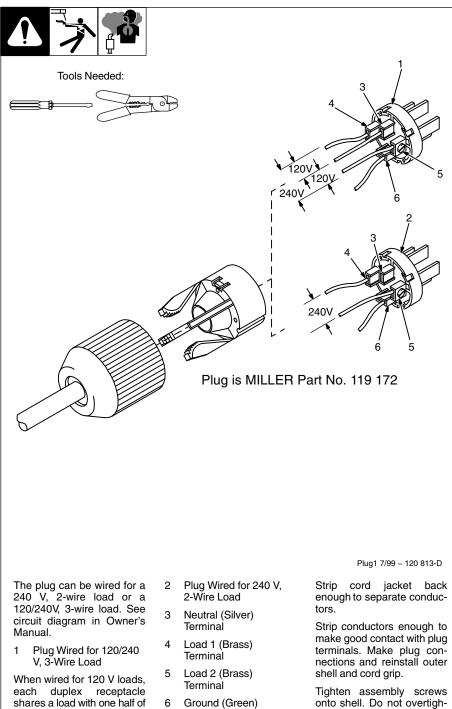
1 Limit Load To 90% Of Generator Output

Always start non-resistive (motor) loads in order from largest to smallest, and add resistive loads last.


2 5 Second Rule

If motor does not start within 5 seconds, turn off power to prevent motor damage. Motor requires more power than generator can supply.

803 636 / S-0625



11. Typical Connections To Supply Standby Power

12. Wiring Optional 240 Volt, Single-Phase Plug (NEMA 14-50P)

ten.

Terminal

240 V receptacle.

13. Selecting Extension Cord (Use Shortest Cord Possible)

Cord Lengths For 120 Volt Loads

Use GFCI protection when operating auxiliary equipment. If unit does not have GFCI receptacles, use GFCI-protected extension cord. Do not use GFCI receptacle to power life support equipment.

Current In	Load In Watts	Maximum Allowable Cord Length In Feet (Meters) For Conductor Size (AWG)*					
Amperes		4	6	8	10	12	14
5	600			350 (106)	225 (68)	137 (42)	100 (30)
7	840		400 (122)	250 (76)	150 (46)	100 (30)	62 (19)
10	1200	400 (122)	275 (84)	175 (53)	112 (34)	62 (19)	50 (15)
15	1800	300 (91)	175 (53)	112 (34)	75 (23)	37 (11)	30 (9)
20	2400	225 (68)	137 (42)	87 (26)	50 (15)	30 (9)	
25	3000	175 (53)	112 (34)	62 (19)	37 (11)		
30	3600	150 (46)	87 (26)	50 (15)	37 (11)		
35	4200	125 (38)	75 (23)	50 (15)			
40	4800	112 (34)	62 (19)	37 (11)			
45	5400	100 (30)	62 (19)				
50	6000	87 (26)	50 (15)				

Cord Lengths For 240 Volt Loads

Use GFCI protection when operating auxiliary equipment. If unit does not have GFCI receptacles, use GFCI-protected extension cord. Do not use GFCI receptacle to power life support equipment.

Current In	Load In	Maximum Allowable Cord Length In Feet (Meters) For Conductor Size (AWG)*					
Amperes	Watts	4	6	8	10	12	14
5	1200			700 (213)	450 (137)	225 (84)	200 (61)
7	1680		800 (244)	500 (152)	300 (91)	200 (61)	125 (38)
10	2400	800 (244)	550 (168)	350 (107)	225 (69)	125 (38)	100 (31)
15	3600	600 (183)	350 (107)	225 (69)	150 (46)	75 (23)	60 (18)
20	4800	450 (137)	275 (84)	175 (53)	100 (31)	60 (18)	
25	6000	350 (107)	225 (69)	125 (38)	75 (23)		
30	7000	300 (91)	175 (53)	100 (31)	75 (23)		
35	8400	250 (76)	150 (46)	100 (31)			
40	9600	225 (69)	125 (38)	75 (23)			
45	10,800	200 (61)	125 (38)				
50	12,000	175 (53)	100 (31)				

*Conductor size is based on maximum 2% voltage drop.

Miller Electric Mfg. Co.

An Illinois Tool Works Company 1635 West Spencer Street Appleton, WI 54914 USA

International Headquarters-USA

USA Phone: 920-735-4505 Auto-Attended USA & Canada FAX: 920-735-4134 International FAX: 920-735-4125

Web Site-www.MillerWelds.com

