Processes

- MIG (GMAW) Welding
- Flux Cored (FCAW) Welding

Description

CV DC 1

Arc Welding Power Source And Wire Feeder

Millermatic Passport Plus
And M-10 Gun

OWNER’S MANUAL

File: MIG (GMAW)
From Miller to You

Thank you and congratulations on choosing Miller. Now you can get the job done and get it done right. We know you don’t have time to do it any other way.

That’s why when Niels Miller first started building arc welders in 1929, he made sure his products offered long-lasting value and superior quality. Like you, his customers couldn’t afford anything less. Miller products had to be more than the best they could be. They had to be the best you could buy.

Today, the people that build and sell Miller products continue the tradition. They’re just as committed to providing equipment and service that meets the high standards of quality and value established in 1929.

This Owner’s Manual is designed to help you get the most out of your Miller products. Please take time to read the Safety precautions. They will help you protect yourself against potential hazards on the worksite.

We’ve made installation and operation quick and easy. With Miller you can count on years of reliable service with proper maintenance. And if for some reason the unit needs repair, there’s a Troubleshooting section that will help you figure out what the problem is. The parts list will then help you to decide the exact part you may need to fix the problem. Warranty and service information for your particular model are also provided.

Miller Electric manufactures a full line of welders and welding related equipment. For information on other quality Miller products, contact your local Miller distributor to receive the latest full line catalog or individual specification sheets. To locate your nearest distributor or service agency call 1-800-4-A-Miller, or visit us at www.MillerWelds.com on the web.
TABLE OF CONTENTS

SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING ... 1
 1-1. Symbol Usage ... 1
 1-2. Arc Welding Hazards ... 1
 1-3. Additional Symbols For Installation, Operation, And Maintenance 3
 1-4. California Proposition 65 Warnings ... 4
 1-5. Principal Safety Standards ... 4
 1-6. EMF Information .. 4
SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION 5
 2-1. Symboles utilisés .. 5
 2-2. Dangers relatifs au soudage à l’arc ... 5
 2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance 7
 2-4. Proposition californienne 65 Avertissements ... 8
 2-5. Principales normes de sécurité ... 9
 2-6. Informations relatives aux CEM ... 9
SECTION 3 – SPECIFICATIONS .. 11
 3-1. Specifications .. 11
 3-2. Volt-Ampere Curves ... 11
 3-3. Duty Cycle And Overheating .. 12
SECTION 4 – INSTALLATION ... 13
 4-1. Installing Work Clamp .. 13
 4-2. Connecting Welding Gun ... 13
 4-3. Process/Polarity Table .. 14
 4-4. Changing Polarity .. 14
 4-5. Internal Shielding Gas Supply .. 14
 4-6. External Shielding Gas Supply .. 15
 4-7. 115 VAC Input Power Requirements .. 16
 4-8. Connecting 1-Phase Input Power For 230 VAC ... 16
 4-9. Electrical Service Guide For 230 VAC ... 17
 4-10. Extension Cord Data .. 17
 4-11. Selecting A Location And Connecting Input Power .. 18
 4-12. Installing 4 in. (102 mm) Wire Spool And Adjusting Hub Tension 19
 4-13. Installing And Threading Welding Wire ... 20
SECTION 5 – OPERATION ... 21
 5-1. Controls .. 21
 5-2. Weld Parameter Chart .. 22
SECTION 6 – MAINTENANCE &TROUBLESHOOTING .. 24
 6-1. Routine Maintenance .. 24
 6-2. Overload Protection .. 24
 6-3. Changing Drive Roll Or Wire Inlet Guide .. 25
 6-4. Replacing Gun Contact Tip ... 25
 6-5. Cleaning Or Replacing Gun Liner ... 26
 6-6. Replacing Switch And/Or Head Tube ... 27
SECTION 7 – ELECTRICAL DIAGRAM ... 28
TABLE OF CONTENTS

SECTION 8 – MIG WELDING (GMAW) GUIDELINES ... 30
 8-1. Typical MIG Process Connections ... 30
 8-2. Typical MIG Process Control Settings ... 31
 8-3. Holding And Positioning Welding Gun .. 32
 8-4. Conditions That Affect Weld Bead Shape ... 33
 8-5. Gun Movement During Welding ... 34
 8-6. Poor Weld Bead Characteristics ... 34
 8-7. Good Weld Bead Characteristics ... 34
 8-8. Troubleshooting – Excessive Spatter .. 35
 8-9. Troubleshooting – Porosity .. 35
 8-10. Troubleshooting – Excessive Penetration .. 36
 8-11. Troubleshooting – Lack Of Penetration ... 36
 8-12. Troubleshooting – Incomplete Fusion .. 36
 8-13. Troubleshooting – Burn-Through ... 37
 8-14. Troubleshooting – Waviness Of Bead .. 37
 8-15. Troubleshooting – Distortion ... 37
 8-16. Common MIG Shielding Gases ... 38

SECTION 9 – PARTS LIST .. 39

WARRANTY
SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING

Protect yourself and others from injury — read and follow these precautions.

1-1. Symbol Usage

DANGER! – Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

NOTICE – Indicates statements not related to personal injury.

Indicates special instructions.

This group of symbols means Warning! Watch Out! ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards. Consult symbols and related instructions below for necessary actions to avoid the hazards.

1-2. Arc Welding Hazards

The symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-5. Read and follow all Safety Standards.

Only qualified persons should install, operate, maintain, and repair this unit.

During operation, keep everybody, especially children, away.

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- Do not touch live electrical parts.

- Wear dry, hole-free insulating gloves and body protection.

- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.

- Do not use AC output in damp areas, if movement is confined, or if there is a danger of falling.

- Use AC output ONLY if required for the welding process.

- If AC output is required, use remote output control if present on unit.

- Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when in cramped positions such as sitting, kneeling, or lying; or when there is a high risk of unavoidable or accidental contact with the workpiece or ground. For these conditions, use the following equipment in order presented: 1) a semiautomatic DC constant voltage (wire) welder, 2) a DC manual (stick) welder, or 3) an AC welder with reduced open-circuit voltage. In most situations, use of a DC, constant voltage wire welder is recommended. And, do not work alone!

- Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).

- Properly install and ground this equipment according to its Owner’s Manual and national, state, and local codes.

- Always verify the supply ground – check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.

- When making input connections, attach proper grounding conductor first – double-check connections.

- Keep cords dry, free of oil and grease, and protected from hot metal and sparks.

- Frequently inspect input power cord for damage or bare wiring – replace cord immediately if damaged – bare wiring can kill.

- Turn off all equipment when not in use.

- Do not use worn, damaged, undersized, or poorly spliced cables.

- Do not drape cables over your body.

- If earth grounding of the workpiece is required, ground it directly with a separate cable.

- Do not touch electrode if you are in contact with the work, ground, or another electrode from a different machine.

- Do not touch electrode holders connected to two welding machines at the same time since double open-circuit voltage will be present.

- Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.

- Wear a safety harness if working above floor level.

- Keep all panels and covers securely in place.

- Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.

- Insulate work clamp when not connected to workpiece to prevent contact with the work or ground.

- Do not touch electrode holders connected to two welding machines at the same time since double open-circuit voltage will be present.

- Do not connect more than one electrode or work cable to any single weld output terminal.

- Keep all panels and covers securely in place.

- Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.

- Insulate work clamp when not connected to workpiece to prevent contact with any metal object.

- Do not connect more than one electrode or work cable to any single weld output terminal.

SIGNIFICANT DC VOLTAGE exists in inverter welding power sources AFTER removal of inputpower.

- Turn Off inverter, disconnect input power, and discharge input capacitors according to instructions in Maintenance Section before touching any parts.

HOT PARTS can burn.

- Do not touch hot parts bare handed.

- Allow cooling period before working on equipment.

- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.
WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot metal, and the heat can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Do not weld where flying sparks can strike flammable material.
- Protect yourself and others from flying sparks and hot metal.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on closed containers such as tanks, drums, or pipes, unless they are properly prepared according to AWS F4.1 (see Safety Standards).
- Do not weld where the atmosphere may contain flammable dust, gas, or liquid vapors (such as gasoline).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.
- Do not use welder to thaw frozen pipes.

- Removable stick electrode from holder or cut off welding wire at contact tip when not in use.
- Wear oil-free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.
- Remove any combustibles, such as a butane lighter or matches, from your person before doing any welding.
- After completion of work, inspect area to ensure it is free of sparks, glowing embers, and flames.
- Use only correct fuses or circuit breakers. Do not oversize or bypass them.
- Follow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B for hot work and have a fire watcher and extinguisher nearby.

FLYING METAL or DIRT can injure eyes.

- Welding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.
- Wear approved safety glasses with side shields even under your welding helmet.

BUILDUP OF GAS can injure or kill.

- Shut off shielding gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

ELECTRIC AND MAGNETIC FIELDS (EMF) can affect Implanted Medical Devices.

- Wearers of Pacemakers and other Implanted Medical Devices should keep away.
- Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.

NOISE can damage hearing.

Noise from some processes or equipment can damage hearing.

- Wear approved ear protection if noise level is high.

CYLINDERS can explode if damaged.

Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

- Protect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
- Keep cylinders away from any welding or other electrical circuits.
- Never drape a welding torch over a gas cylinder.
- Never allow a welding electrode to touch any cylinder.
- Never weld on a pressurized cylinder – explosion will result.
- Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- Turn face away from valve outlet when opening cylinder valve.
- Keep protective cap in place over valve except when cylinder is in use or connected for use.
- Use the right equipment, correct procedures, and sufficient number of persons to lift and move cylinders.
- Read and follow instructions on compressed gas cylinders, associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.

FUMES AND GASES can be hazardous.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding fumes and gases.
- If ventilation is poor, wear an approved air-supplied respirator.
- Read and understand the Material Safety Data Sheets (MSDSs) and the manufacturer's instructions for metals, consumables, coatings, cleaners, and degreasers.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watchperson nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
- Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.
- Never weld where flying sparks can strike flammable material.
- Always have a trained watchperson nearby. Be sure the breathing air is safe.
- Be alert that welding sparks and hot materials from welding can cause fire or explosion.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 (see Safety Standards).
- Do not weld where the atmosphere may contain flammable dust, gas, or liquid vapors (such as gasoline).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.
- Do not use welder to thaw frozen pipes.

ARC RAYS can burn eyes and skin.

Arc rays from the welding process produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.

- Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and glare and sparks; warn others not to watch the arc.
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash, glare and sparks; warn others not to watch the arc.
- Wear protective clothing made from durable, flame-resistant material (leather, heavy cotton, or wool) and foot protection.
1-3. Additional Symbols For Installation, Operation, And Maintenance

FIRE OR EXPLOSION hazard.
- Do not install or place unit on, over, or near combustible surfaces.
- Do not install unit near flammables.
- Do not overload building wiring – be sure power supply system is properly sized, rated, and protected to handle this unit.

FALLING EQUIPMENT can injure.
- Use lifting eye to lift unit only, NOT running gear, gas cylinders, or any other accessories.
- Use equipment of adequate capacity to lift and support unit.
- If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit.
- Keep equipment (cables and cords) away from moving vehicles when working from an aerial location.
- Follow the guidelines in the Applications Manual for the Revised NIOSH Lifting Equation (Publication No. 94-110) when manually lifting heavy parts or equipment.

OVERUSE can cause OVERHEATING
- Allow cooling period; follow rated duty cycle.
- Reduce current or reduce duty cycle before starting to weld again.
- Do not block or filter airflow to unit.

FLYING SPARKS can injure.
- Wear a face shield to protect eyes and face.
- Shape tungsten electrode only on grinder with proper guards in a safe location wearing proper face, hand, and body protection.
- Sparks can cause fires — keep flammables away.

STATIC (ESD) can damage PC boards.
- Put on grounded wrist strap BEFORE handling boards or parts.
- Use proper static-proof bags and boxes to store, move, or ship PC boards.

MOVING PARTS can injure.
- Keep away from moving parts.
- Keep away from pinch points such as drive rolls.

WELDING WIRE can injure.
- Do not press gun trigger until instructed to do so.
- Do not point gun toward any part of the body, other people, or any metal when threading welding wire.

MOVING PARTS can injure.
- Keep away from moving parts such as fans.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Have only qualified persons remove doors, panels, covers, or guards for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when maintenance is finished and before reconnecting input power.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

H.F. RADIATION can cause interference.
- High-frequency (H.F.) can interfere with radio navigation, safety services, computers, and communications equipment.
- Have only qualified persons familiar with electronic equipment perform this installation.
- The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
- If notified by the FCC about interference, stop using the equipment at once.
- Have the installation regularly checked and maintained.
- Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.

ARC WELDING can cause interference.
- Electromagnetic energy can interfere with sensitive electronic equipment such as computers and computer-driven equipment such as robots.
- Be sure all equipment in the welding area is electromagnetically compatible.
- To reduce possible interference, keep weld cables as short as possible, close together, and down low, such as on the floor.
- Locate welding operation 100 meters from any sensitive electronic equipment.
- Be sure this welding machine is installed and grounded according to this manual.
- If interference still occurs, the user must take extra measures such as moving the welding machine, using shielded cables, using line filters, or shielding the work area.
1-4. California Proposition 65 Warnings

- Welding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)
- Battery posts, terminals and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. Wash hands after handling.
- This product contains chemicals, including lead, known to the state of California to cause cancer, birth defects, or other reproductive harm. Wash hands after use.

1-5. Principal Safety Standards

- Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1, from Compressed Gas Association, 4221 Wainey Road, 5th Floor, Chantilly, VA 20151 (phone: 703-788-2700, website: www.cganet.com).

1-6. EMF Information

Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). Welding current creates an EMF field around the welding circuit and welding equipment. EMF fields may interfere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, access restrictions for passers-by or individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

1. Keep cables close together by twisting or taping them, or using a cable cover.
2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld whilst carrying the welding power source or wire feeder.

About Implanted Medical Devices:
Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.
SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION

Se protéger et protéger les autres contre le risque de blessure — lire et respecter ces consignes.

2-1. Symboles utilisés

![Image](https://example.com/symbol.png)

DANGER! Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

NOTE Indique des déclarations pas en relation avec des blessures personnelles.

2-2. Dangers relatifs au soudage à l’arc

Les symboles représentés ci-dessous sont utilisés dans ce manuel pour attirer l’attention et identifier les dangers possibles. En présence de l’un de ces symboles, prendre garde et suivre les instructions afférentes pour éviter tout risque. Les instructions en matière de sécurité indiquées ci-dessous ne constituent qu’un sommaire des instructions de sécurité plus complètes fournies dans les normes de sécurité énumérées dans la Section 2-5. Lire et observer toutes les normes de sécurité.

Seul un personnel qualifié est autorisé à installer, faire fonctionner, entretenir et réparer cet appareil.

Pendant le fonctionnement, maintenir à distance toutes les personnes, notamment les enfants de l’appareil.

UNE DÉCHARGE ÉLECTRIQUE peut entraîner la mort.

Le contact d’organes électriques sous tension peut provoquer des accidents mortels ou des brûures graves. Le circuit de l’électrode et de la pièce est sous tension lorsque le courant est délivré à la sortie. Le circuit d’alimentation et les circuits internes de la machine sont également sous tension lorsque l’alimentation est sur Marche. Dans le mode de soudage avec du fil, le fil, le dérouleur, le bloc de commande du rouleau et toutes les parties métalliques en contact avec le fil sont sous tension électrique. Un équipement installé ou mis à la terre de manière incorrecte ou impropre constitue un danger.

- Ne pas toucher aux pièces électriques sous tension.
- Porter des gants isolants et des vêtements de protection secs et sans trous.
- S’isoler de la pièce à couper et du sol en utilisant des housses ou des tapis assez grands afin d’éviter tout contact physique avec la pièce à couper ou le sol.
- Ne pas se servir de source électrique à courant électrique dans les zones humides, dans les endroits confinés ou là où on risque de tomber.
- Se servir d’une source électrique à courant électrique UNIQUEMENT si le procédé de soudage le demande.
- Si l’utilisation d’une source électrique à courant électrique s’avère nécessaire, se servir de la fonction de télécommande s’il l’appareil en est équipé.
- D’autres consignes de sécurité sont nécessaires dans les conditions suivantes : risques électriques dans un environnement humide ou si l’on porte des vêtements mouillés ; sur des structures métalliques telles que sols, grilles ou échafaudages ; en position coincée comme assise, à genoux ou couchée ; ou s’il y a un risque élevé de contact inévitable ou accidentel avec la pièce à souder ou le sol. Dans ces conditions, utiliser les équipements suivants, dans l’ordre indiqué : 1) un poste à souder DC à tension constante (à fil), 2) un poste à souder DC manuel (électrode) ou 3) un poste à souder AC à tension à vide réduite. Dans la plupart des situations, l’utilisation d’un poste à souder DC à fil à tension constante est recommandée. En outre, ne pas travailler seul !
- Installer le poste correctement et le mettre à la terre convenablement selon les consignes du manuel de l’opérateur et les normes nationales, provinciales et locales.
- Toujours vérifier la terre du cordon d’alimentation. Vérifier s’assurer que le fil de terre du cordon d’alimentation est bien raccordé à la borne de terre du sectionneur ou que la fiche du cordon est raccordée à une prise correctement mise à la terre.
- En effectuant les raccordements d’entrée, fixer d’abord le conducteur de mise à la terre approprié et contre-vérifier les connexions.
- Les câbles doivent être exempts d’humidité, d’huile et de graisse ; protégez-les contre les étincelles et les pièces métalliques chaudes.
- Vérifier fréquemment le cordon d’alimentation afin de s’assurer qu’il n’est pas altéré ou à nu, le remplacer immédiatement s’il l’est.
- Un fil à nu peut entraîner la mort.
- L’équipement doit être hors tension lorsqu’il n’est pas utilisé.
- Ne pas utiliser des câbles usés, endommagés, de grosseur insuffisante ou mal épissés.
- Ne pas enrouler les câbles autour du corps.
- Si la pièce soudée doit être mise à la terre, le faire directement avec un câble distinct.
- Ne pas toucher l’électrode quand on est en contact avec la pièce, la terre ou une électrode provenant d’une autre machine.
- Ne pas toucher des porte électrodes connectés à deux machines en même temps à cause de la présence d’une tension à vide doublée.
- N’utiliser qu’un matériel en bon état. Réparer ou remplacer sur-le-champ les pièces endommagées. Entretenir l’appareil conformément à ce manuel.
- Porter un harnais de sécurité si l’on doit travailler au-dessus du sol.
- S’assurer que tous les panneaux et couvercles sont correctement en place.
- Fixer le câble de retour de façon à obtenir un bon contact métal-métal avec la pièce à souder ou la table de travail, le plus près possible de la soudure.
- Isoler la pince de masse quand pas mis à la pièce pour éviter le contact avec tout objet métallique.
- Ne pas raccorder plus d’une électrode ou plus d’un câble de masse à une même borne de sortie de soudage.

OM-235 825 Page 5
Il reste une TENSION DC NON NÉGLIGEABLE dans les sources de soudage onduleur UNE FOIS l’alimentation coupée.

- Arrêter les convertisseurs, débrancher le courant électrique et décharger les condensateurs d'alimentation selon les instructions indiquées dans la partie Entretien avant de toucher les pièces.

LES PIÈCES CHAUDES peuvent provoquer des brûlures.

- Ne pas toucher à mains nues les parties chaudes.
- Prévoir une période de refroidissement avant de travailler à l'équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

LES FUMÉES ET LES GAZ peuvent être dangereux.

Le soudage génère des fumées et des gaz. Leur inhalation peut être dangereuse pour votre santé.

- Eloigner votre tête des fumées. Ne pas respirer les fumées.
- À l’intérieur, ventiler la zone et/ou utiliser une ventilation forcée au niveau de l’arc pour l’évacuation des fumées et des gaz de soudage.
- Si la ventilation est médiocre, porter un respirateur anti-vapeurs approuvé.
- Lire et comprendre les spécifications de sécurité des matériaux (MSDS) et les instructions du fabricant concernant les métaux, les consommables, les revêtements, les nettoyants et les dégraissants.
- Travailler dans un espace fermé seulement s’il est bien ventilé ou en portant un respirateur à alimentation d’air. Demander toujours à un surveillant dûment formé de se tenir à proximité. Des fumées et des gaz de soudage peuvent déplacer l’air et abaisser le niveau d’oxygène provoquant des blessures ou des accidents mortels. S’assurer que l’air de respiration ne présente aucun danger.
- Ne pas souder dans des endroits situés à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent réagir en présence de vapeurs et former des gaz hautement toxiques et irritants.
- Ne pas souder des métaux munis d’un revêtement, tels que l’acier galvanisé, plaqué en plomb ou au cadmium à moins que le revêtement n’ait été enlevé dans la zone de soudure, qu’il soit bien ventilé, et en portant un respirateur à alimentation d’air. Les revêtements et tous les métaux renfermant ces éléments peuvent dégager des fumées toxiques en cas de soudage.

LES RAYONS DE L’ARC peuvent provoquer des brûlures dans les yeux et sur la peau.

Le rayonnement de l’arc du procédé de soudage génère des rayons visibles et invisibles intense (ultraviolets et infrarouges) susceptibles de provoquer des brûlure dans les yeux et sur la peau. Des étnêcles sont projetées pendant la soudage.

- Porter un casque de soudage approuvé muni de verres filtrants appropriés pour protéger visage et yeux, pour protéger votre visage et vos yeux pendant le soudage ou pour regarder (voir ANSI Z49.1 et Z87.1 énuméré dans les normes de sécurité).

- Porter des lunettes de sécurité avec écrans latéraux même sous votre casque.

- Avoir recours à des écrans protecteurs ou à des rideaux pour protéger les autres contre les rayonnements les éblouissements et les étnêcles ; prévenir toute personne sur les lieux de ne pas regarder l’arc.

- Porter des vêtements confectionnés avec des matières résistantes et ignifuges (cuir, coton lourd ou laine) et des bottes de protection.

LE SOUDAGE peut provoquer un incendie ou une explosion.

Le soudage effectué sur des conteneurs fermés tels que des réservoirs, tambours ou conduites peut provoquer un incendie ou une explosion. Des étincelles peuvent être projetées de l’arc de soudage. La projection d’étincelles, des pièces chaudes et des équipements chauds peut provoquer des incendies et des brûlures. Le contact accidentel de l’électrode avec des objets métalliques peut provoquer des étincelles, une explosion, un surchauffement ou un incendie. Avant de commencer le soudage, vérifier et s’assurer que l’endroit ne présente pas de danger.

- Déplacer toutes les substances inflammables à une distance de 10,7 m de l’arc de soudage. En cas d'impossibilité les recouvrir soigneusement avec des protections homologuées.
- Ne pas souder dans un endroit là où des étnêcles peuvent tomber sur des substances inflammables.
- Se protéger et d’autres personnes de la projection d’étincelles et de métal chaud.
- Des étnêcles et des matériaux chauds du soudage peuvent facilement passer dans d’autres zones en traversant de petites fissures et des ouvertures.
- Surveiller tout déclenchement d’incendie et tenir un extincteur à proximité.
- Le soudage effectué sur un plafond, plancher, paroi ou séparation peut déclencher un incendie de l’autre côté.
- Ne pas effectuer le soudage sur des conteneurs fermés tels que des réservoirs, tambours, ou conduites, à moins qu’ils n’aient été préparés correctement conformément à AWS F4.1 (voir les normes de sécurité).
- Ne soudez pas si l’air ambiant est chargé de particules, gaz, ou vapeurs inflammables (vapeur d’essence, par exemple).
- Brancher le câble de masse sur la pièce le plus près possible de la zone de soudage pour éviter le transport du courant sur une longue distance par des chemins inconnus éventuels en provoquant des risques d’électrocution, d’étincelles et d’incendie.
- Ne pas utiliser le poste de soudage pour dégeler des conduites gelées.
- En cas de non utilisation, enlever la baguette d’électrode du porte-electrode ou couper le fil à la pointe de contact.
- Porter des vêtements de protection dépourvus d’huile tels que des gants en cuir, une chemise en matériau lourd, des pantalons sans revers, des chaussures hautes et un couvre chef.
- Avant de souder, retirer toute substance combustible de vos poches telles qu’un allumeur au butane ou des allumettes.
- Une fois le travail achevé, assurez-vous qu’il ne reste aucune trace d’étincelles incandescentes ni de flammes.
- Utiliser exclusivement des fusibles ou coupe-circuits appropriés. Ne pas augmenter leur puissance ; ne pas les poncer.
- Une fois le travail achevé, assurez-vous qu’il ne reste aucune trace d’étincelles incandescentes ni de flammes.
- Utiliser exclusivement des fusibles ou coupe-circuits appropriés. Ne pas augmenter leur puissance ; ne pas les poncer.
- Suivre les recommandations dans OSHA 1910.252(a)(2)(iv) et NFPA 51B pour les travaux à chaud et avoir de la surveillance et un extincteur à proximité.

DES PIECES DE METAL ou DES SALETES peuvent provoquer des blessures dans les yeux.

- Le soudage, l’écailllement, le passage de la pièce à la brosse en fil de fer, et le meulage génèrent des étincelles et des particules métalliques volantes. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Porter des lunettes de sécurité avec écrans latéraux ou un écran facial.
LES ACCUMULATIONS DE GAZ risquent de provoquer des blessures ou même la mort.

- Fermer l’alimentation du gaz protecteur en cas de non-utilisation.
- Veiller toujours à bien aérer les espaces confi- nés ou se servir d’un respirateur d’adduction d’air homologué.

Les CHAMPS ÉLECTROMAGNÉTIQUES (CEM) peuvent affecter les implants médicaux.

- Les porteurs de stimulateurs cardiaques et autres implants médicaux doivent rester à distance.
- Les porteurs d’implants médicaux doivent consulter leur médecin et le fabricant du dispositif avant de s’approcher de la zone où se déroule le soudage à l’arc, du soudage par points, du gougeage, de la découpe plasma ou une opération de chauffage par induction.

LE BRUIT peut endommager l’ouïe.

Le bruit des processus et des équipements peut affecter l’ouïe.

- Porter des protections approuvées pour les oreilles si le niveau sonore est trop élevé.

2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance

Risque D’INCENDIE OU D’EXPLOSION.

- Ne pas placer l’appareil sur, au-dessus ou à proximité de surfaces inflammbles.
- Ne pas installer l’appareil à proximité de pro-duits inflammbles.
- Ne pas surcharger l’installation électrique – s’assurer que l’alimentation est correctement dimensionnée et protégée avant de mettre l’appareil en service.

LA CHUTE DE L’ÉQUIPEMENT peut provoquer des blessures.

- Utiliser l’anneau de levage uniquement pour soulever l’appareil, NON PAS les chariots, les bouteilles de gaz ou tout autre accessoire.
- Utiliser un équipement de levage de capacité suffisante pour lever l’appareil.
- En utilisant des fourches de levage pour déplacer l’unité, s’assu-rer que les fourches sont suffisamment longues pour dépasser du côté opposé de l’appareil.
- Tenir l’équipement (câbles et cordons) à distance des véhicules mobiles lors de toute opération en hauteur.
- Suivre les consignes du Manuel des applications pour l’équation de levage NIOSH révisée (Publication N°94–110) lors du levage manuelle de pièces ou équipements lourds.

LES BOUTEILLES peuvent exploser si elles sont endommagées.

Des bouteilles de gaz protecteur contiennent du gaz sous haute pression. Si une bouteille est endom-magée, elle peut exploser. Du fait que les bouteilles de gaz font normalement partie du procédé de soudage, les manipuler avec précaution.

- Protéger les bouteilles de gaz comprimé d’une chaleur excessive, des chocs mécaniques, des dommages physiques, du laitier, des flammes ouvertes, des étincelles et des arcs.
- Placer les bouteilles debout en les fixant dans un support station-naire ou dans un porte-bouteilles pour les empêcher de tomber ou de se renverser.
- Tenir les bouteilles éloignées des circuits de soudage ou autres circuits électriques.
- Ne jamais placer une torche de soudage sur une bouteille à gaz.
- Une électrode de soudage ne doit jamais entrer en contact avec une bouteille.
- Ne jamais souder une bouteille pressurisée – risque d’explosion.
- Utiliser seulement des bouteilles de gaz protecteur, régulateurs, tuyaux et raccords convenables pour cette application spécifique ; les maintenir ainsi que les éléments associés en bon état.
- Détourner votre visage du détendeur-régulateur lorsque vous ouvrez la soupape de la bouteille.
- Le couvercle du détendeur doit toujours être en place, sauf lorsque la bouteille est utilisée ou qu’elle est reliée pour usage ultérieur.
- Utiliser les équipements corrects, les bonnes procédures et suffi-samment de personnes pour soulever et déplacer les bouteilles.
- Lire et suivre les instructions sur les bouteilles de gaz comprimé, l’équipement connexe et le dépliant P-1 de la CGA (Compressed Gas Association) mentionné dans les principales normes de sécu-rité.

L’EMPLOI EXCESSIF peut SURCHAUFFER L’ÉQUIPEMENT.

- Prévoir une période de refroidissement ; res-pecter le cycle opératoire nominal.
- Réduire le courant ou le facteur de marche avant de poursuivre le soudage.
- Ne pas obstruer les passages d’air du poste.

LES ÉTINCELLES PROJETÉES peuvent provoquer des blessures.

- Porter un écran facial pour protéger le visage et les yeux.
- Affûter l’électrode au tungstène uniquement à la meuleuse dotée de protecteurs. Cette manœuvre est à exécuter dans un endroit sûr lorsque l’on porte l’équipement homologué de protection du visage, des mains et du corps.
- Les étincelles risquent de causer un incendie – éloigner toute sub-stance inflammable.

LES CHARGES ÉLECTROSTATI-QUES peuvent endommager les cir-cuits imprimés.

- Établir la connexion avec la barrette de terre avant de manipuler des cartes ou des pièces.
- Utiliser des pochettes et des boîtes antista-tiques pour stocker, déplacer ou expédier des cartes de circuits imprimés.
2-4. Proposition californienne 65 Avertissements

Les équipements de soudage et de coupage produisent des fumées et des gaz qui contiennent des produits chimiques dont l’État de Californie reconnait qu’ils provoquent des malformations congénitales et, dans certains cas, des cancers. (Code de santé et de sécurité de Californie, chapitre 25249.5 et suivants)

Les batteries, les bornes et autres accessoires contiennent du plomb et des composés à base de plomb, produits chimiques dont l’État de Californie reconnait qu’ils provoquent des cancers et des malformations congénitales ou autres problèmes de procréation. Se laver les mains après manipulation.

Ce produit contient des produits chimiques, notamment du plomb, dont l’État de Californie reconnait qu’ils provoquent des cancers, des malformations congénitales ou d’autres problèmes de procréation. Se laver les mains après utilisation.

Pour les moteurs à essence :

Les gaz d’échappement des moteurs contiennent des produits chimiques dont l’État de Californie reconnait qu’ils provoquent des cancers et des malformations congénitales ou autres problèmes de procréation.

Pour les moteurs diesel :

Les gaz d’échappement des moteurs diesel et certains de leurs composants sont reconnus par l’État de Californie comme provoquant des cancers et des malformations congénitales ou autres problèmes de procréation.
2-5. Principales normes de sécurité

Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1, de Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly, VA 20151 (téléphone : 703-788-2700, site Internet : www.cganet.com).

Safe Practice For Occupational And Educational Eye And Face Protection, ANSI Standard Z87.1, de American National Standards Institute, 25 West 43rd Street, New York, NY 10036 (téléphone : 212-642-4900, site Internet : www.ansi.org).

2-6. Informations relatives aux CEM

Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits. Le courant de soudage crée un CEM autour du circuit et du matériel de soudage. Les CEM peuvent créer des interférences avec certains implants médicaux comme des stimulateurs cardiaques. Des mesures de protection pour les porteurs d’implants médicaux doivent être prises: par exemple, des restrictions d’accès pour les passants ou une évaluation individuelle des risques pour les soudeurs. Tous les soudeurs doivent appliquer les procédures suivantes pour minimiser l’exposition aux CEM provenant du circuit de soudage:

1. Rassembler les câbles en les torsadant ou en les attachant avec du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d’un côté et à distance de l’opérateur.
3. Ne pas courber et ne pas entourer les câbles autour de votre corps.
4. Maintenir la tête et le torse aussi loin que possible du matériel du circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la soudeure.
6. Ne pas travailler à proximité d’une source de soudage, ni s’asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le dévidoir.

En ce qui concerne les implants médicaux :

Les porteurs d’implants doivent d’abord consulter leur médecin avant de s’approcher des opérations de soudage à l’arc, de soudage par points, de gougeage, du coupage plasma ou de chauffage par induction. Si le médecin approuve, il est recommandé de suivre les procédures précédentes.
SECTION 3 – SPECIFICATIONS

3-1. Specifications

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output, 50/60 Hz, Single-Phase</th>
<th>KVA</th>
<th>KW</th>
<th>Weight W/ Gun</th>
<th>Overall Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 VAC</td>
<td>110 A @ 19.5 Volts DC, 20% Duty Cycle</td>
<td>30 – 140</td>
<td>45</td>
<td>23.1</td>
<td>2.69</td>
<td>2.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 A @ 18.0 Volts DC, 100% Duty Cycle*</td>
<td></td>
<td></td>
<td>16.4*</td>
<td>1.9*</td>
<td>1.81*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Type And Dia</td>
<td>Solid/Stainless</td>
<td>Flux Cored</td>
<td>Wire Feed Speed Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid/Stainless</td>
<td>.023 - .035 in. (0.6 - 0.8 mm)</td>
<td>.030 - .035 in. (0.8 - 0.9 mm)</td>
<td>40 – 400 IPM (1.0 – 10.0 m/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230 VAC	150 A @ 21.5 Volts DC, 20% Duty Cycle	30 – 180	45	17.7	4.06	3.89			
	130 A @ 20.5 Volts DC, 60% Duty Cycle								45 lb (20.4 kg)
Wire Type And Dia	Solid/Stainless	Flux Cored	Wire Feed Speed Range						
Solid/Stainless	.023 – .035 in. (0.6 – 0.9 mm)	.030 – .045 in. (0.8 – 1.2 mm)	40 – 400 IPM (1.0 – 10.0 m/min)						

* CSA Rating

3-2. Volt-Ampere Curves

The volt-ampere curves show the minimum and maximum voltage and amperage output capabilities of the welding power source. Curves of other settings fall between the curves shown.
Duty Cycle and Overheating

Duty Cycle is the percentage of 10 minutes that the unit can weld at rated load without overheating.

If the unit overheats, the thermostat(s) open, output stops, and the cooling fan runs. Wait fifteen minutes for the unit to cool. Reduce amperage or duty cycle before welding.

NOTICE – Exceeding duty cycle can damage the unit or gun and void warranty.

115 VAC DUTY CYCLE

<table>
<thead>
<tr>
<th>% DUTY CYCLE</th>
<th>WELD AMPERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

230 VAC DUTY CYCLE

<table>
<thead>
<tr>
<th>% DUTY CYCLE</th>
<th>WELD AMPERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>180</td>
</tr>
<tr>
<td>30</td>
<td>160</td>
</tr>
<tr>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Overheating

- Wait 15 minutes for the unit to cool.
- Reduce amperage or duty cycle before welding.

NOTICE – Exceeding duty cycle can damage the unit or gun and void warranty.
4-1. Installing Work Clamp

Tighten connection hardware with proper tools. Do not just hand tighten hardware. A loose electrical connection will cause poor weld performance and excessive heating of the work clamp.

1. Work Clamp
2. Work Cable From Unit
3. Screw
4. Flat Washer
5. Lock Washer
6. Nut

Route work cable through hole in clamp handle. Secure cable with hardware as shown.

Tools Needed:
- 7/16 in.

4-2. Connecting Welding Gun

Loosen knob, insert gun end into block. Position outlet wire guide as close as possible to drive rolls without touching. Tighten knob.

4. Gun Trigger Plug
5. Gun Trigger Receptacle

Connect trigger plug to receptacle. Be sure not to pinch lead when closing case.

6. Positive Weld Terminal
7. Negative Weld Terminal

Connect work cable to either the positive or negative weld terminal, depending on the wire type (see Sections 4-3 and 4-4). The illustration shows electrode positive (DCEP) for gas-shielded wires.

8. Work Cable w/Boot
9. Work Clamp

Connect work clamp to workpiece.
4-3. Process/Polarity Table

<table>
<thead>
<tr>
<th>Process</th>
<th>Polarity</th>
<th>Cable Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW – Solid wire with shielding gas</td>
<td>DCEP – Reverse polarity</td>
<td>Connect to positive (+) output terminal</td>
</tr>
<tr>
<td>FCAW – Self-shielding wire – no shielding gas</td>
<td>DCEN – Straight Polarity</td>
<td>Connect to negative (−) output terminal</td>
</tr>
</tbody>
</table>

4-4. Changing Polarity

1. Lead Connections For Direct Current Electrode Positive (DCEP)
2. Lead Connections For Direct Current Electrode Negative (DCEN)
3. Insulating Boot

Always read and follow wire manufacturer's recommended polarity, and see Section 4-3.

Be sure insulating boot is installed on Negative (−) terminal.

Close door.

Ref. 220 579-A / Ref 803 811

4-5. Internal Shielding Gas Supply

1. Internal Shielding Gas Bottle
 - The internal shielding gas bottle is for CO₂ gas only.
2. Regulator
3. Internal/External Transfer Switch
 - The Internal/External Transfer switch allows changing between the internal or external shielding gas supply.
 - Place switch in the Internal Gas Bottle position.

Exposing the gas cylinder to temperatures in excess of 130°F (54°C) will cause the pressure relief valve to activate, resulting in the loss of shielding gas.

- Do NOT expose gas cylinders to direct sunlight.
- Do NOT store gas cylinders in black storage bag on the side of the unit.
- Do NOT operate or store the unit in direct sunlight.
- Do NOT store gas cylinders in a hot automobile.

If a welding arc is not established within one second, the gas solenoid turns off to conserve shielding gas.

Ref. 803 811-G / Ref. 802 517-A
4-6. External Shielding Gas Supply

1 Shielding Gas Connector
The shielding gas connector allows connecting an external shielding gas supply to the unit.

2 Internal/External Transfer Switch
The Internal/External Transfer switch allows changing between the internal or external shielding gas supply.
Place switch in the External Gas Supply position.

If a welding arc is not established within one second, the gas solenoid turns off to conserve shielding gas.
4-7. 115 VAC Input Power Requirements

Connect input power cord to a 20 A individual branch circuit. If connecting to a circuit protected by fuses, use a time-delay fuse marked “D”.

4-8. Connecting 1-Phase Input Power For 230 VAC

- Installation must meet all National and Local Codes – have only qualified persons make this installation.
- Disconnect and lockout/tagout input power before connecting input conductors from unit.
- Always connect green or green/yellow conductor to supply grounding terminal first, and never to a line terminal.
- Black And White Input Conductor (L1 And L2)
- Green Or Green/Yellow Grounding Conductor
- Input Power Cord.
- Disconnect Device (switch shown in the OFF position)
- Disconnect Device Grounding Terminal
- Disconnect Device Line Terminals

Connect green or green/yellow grounding conductor to disconnect device grounding terminal first.

Connect input conductors L1 and L2 to disconnect device line terminals.

- Over-Current Protection
- Select type and size of over-current protection using Section 4-9 (fused disconnect switch shown).
- Receptacle (NEMA 6-50R)
- Customer Supplied

Close and secure door on disconnect device. Remove lockout/tagout device, and place switch in the On position.

Tools Needed:

803 766-B / Ref. 802 443-A
4-9. Electrical Service Guide For 230 VAC

⚠️ Failure to follow these electrical service guide recommendations could create an electric shock or fire hazard. These recommendations are for a dedicated branch circuit sized for the rated output and duty cycle of the welding power source.

Actual input voltage should not exceed ±10% of indicated required input voltage. If actual input voltage is outside of this range, output may not be available.

<table>
<thead>
<tr>
<th>Input Voltage (V)</th>
<th>50/60 Hz Single Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>230</td>
</tr>
</tbody>
</table>

| Input Amperes (A) At Rated Output | 17.7 |

Max Recommended Standard Fuse Rating In Amperes ¹	20
Time-Delay Fuses ²	25
Normal Operating Fuses ³	20

| Min Input Conductor Size In AWG ⁴ | 14 |

| Max Recommended Input Conductor Length In Feet (Meters) | 65 (20) |

| Min Grounding Conductor Size In AWG ⁴ | 14 |

Reference: 2008 National Electrical Code (NEC) (including article 630)

1. If a circuit breaker is used in place of a fuse, choose a circuit breaker with time-current curves comparable to the recommended fuse.
2. “Time-Delay” fuses are UL class “RK5”. See UL 248.
3. “Normal Operating” (general purpose - no intentional delay) fuses are UL class “K5” (up to and including 60 amps) and UL class “H” (65 amps and above).
4. Conductor data in this section specifies conductor size (excluding flexible cord or cable) between the panelboard and the equipment per NEC Table 310.16. If a flexible cord or cable is used, minimum conductor size may increase. See NEC Table 400.5(A) for flexible cord and cable requirements.

4-10. Extension Cord Data

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Input Power Phase</th>
<th>Hertz</th>
<th>Conductor Size</th>
<th>Max. Cord Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 V</td>
<td>1</td>
<td>50/60</td>
<td>14 AWG</td>
<td>24 ft (7 m)</td>
</tr>
<tr>
<td>230 V</td>
<td>1</td>
<td>50/60</td>
<td>14 AWG</td>
<td>65 ft (20 m)</td>
</tr>
</tbody>
</table>
4-11. Selecting A Location And Connecting Input Power

Do Not cut off power cord connector and rewire. The power cord connector and plugs will work with standard NEMA receptacles. Modifying power cord, connector, and plugs will void product warranty.

Do not move or operate unit where it could tip.

Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.

The Auto-Line circuitry in this unit automatically links the power source to the primary voltage being applied, either 115 or 230 VAC.

For 115 volts ac input power, a 20 ampere individual branch circuit protected by time-delay fuses or circuit breaker is required.

For 230 volts AC input power, see Section 4-9.

1 Rating Label
Supply correct input power.

2 Power Cord Connector

3 Plug – NEMA Type 5–15P

4 Receptacle – NEMA Type 5–15R (Customer Supplied)

5 Plug – NEMA Type 5–20P (Optional)

6 Receptacle – NEMA Type 5–20R (Customer Supplied)

7 Plug – NEMA Type 6–50P

8 Receptacle – NEMA Type 6–50R (Customer Supplied)

Select plug for power supply receptacle available at site. Install plug onto power cord adapter. As threaded collar is tightened, push plug onto adapter until collar is completely tight. Connect plug to receptacle.

For 115 volts ac input power, a 20 ampere individual branch circuit protected by time-delay fuses or circuit breaker is required.

Ref. 803 812-A / Ref. 804 503-A

OM-235 825 Page 18
4-12. Installing 4 in. (102 mm) Wire Spool And Adjusting Hub Tension

Installing 4 in. (102 mm) Wire Spool

1 Brake Adjust Knob
2 Spring
3 Nylon Washer
4 4 in. (102 mm) Wire Spool

Install 4 in. (102 mm) wire spool using spool components as shown.

Rotating brake adjust knob until a slight force is needed to turn spool, then tension is set.

Tools Needed:

For units prior to serial no. LG160043N, order 2 nylon washers (p/n 228 771) and spring (p/n 225 256) to install the 4 in. (102 mm) wire spool.

Removing 8 in. (203 mm) Spool Components

1 Hub Nut
2 Brake Adjust Knob
3 Spring
4 Nylon Washer
5 Spool Hub
6 Brake Washer

Remove brake adjust knob and spring, and nylon washer.

Remove and retain hub nut, spool hub, and brake washer.

804 629-A
4-13. Installing And Threading Welding Wire

Installing Wire And Adjusting Hub Tension:
1 Retaining Nut
2 Hub Tension Adjustment Screw

Remove retaining ring, and install spool so hub pin fits spool hole. Re-install retaining nut.

Adjust tension screw so only a slight force is needed to turn spool.

Threading Welding Wire:
3 Pressure Assembly
 Adjustment Knob

Lay gun cable out straight.

Open pressure assembly, hold wire tightly, and cut off end. Push wire through guides into gun.

Close and tighten pressure assembly. Press gun trigger until wire comes out gun.

Feed wire against wooden surface, and tighten knob so wire does not slip.

Cut off wire, and close door.

Use pressure indicator scale to set a desired drive roll pressure. Begin with a setting of 2. If necessary, make additional adjustments after trying this initial setting.

Hold wire tightly to keep it from unraveling.

Tools Needed:

Pressure Indicator Scale

WOOD

Ref. 803 810-E
SECTION 5 – OPERATION

5-1. Controls

1 Voltage Control
 Turn control clockwise to increase voltage.
 The Voltage Control range from minimum to 7 is for 115 V input power.
 The full range from minimum to maximum (10) is for 230 V input power.

2 Wire Speed Control
 Turn control clockwise to increase wire feed speed.

3 Power Light

4 Over Temperature Light

5 Mild Steel Indicator Light

6 Stainless Steel Indicator Light

7 Aluminum (Spool Gun) Indicator Light
 Indicator light works with Spoolmate 100 Series spool gun. Switch supplied with spool gun is NOT used with Passport Plus application.

8 Process Switch
 Pressing switch will change inductance to fit material type and operator’s preference.

9 Power Switch

Rear View

Ref. 235 125-B / Ref. 803 809-D
5-2. Weld Parameter Chart

Refer to chart below to select Voltage and Wire Speed based on thickness of material being welded.

1. Number on left of slash is Voltage Knob Setting. (Example: 4.5 / 55)
2. Number on right of slash is Wire Speed Knob Setting. (Example: 4.5 / 55)

<table>
<thead>
<tr>
<th>Material</th>
<th>Suggested Wire Types, Polarity</th>
<th>Suggested Shielding Gases (Flow Rate of 20-30 cfm)</th>
<th>Wire Sizes (Diameters)</th>
<th>24 ga. 115/230V</th>
<th>20/22 ga. 115/230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>Solid Wire ER70S–6 (DCEP)</td>
<td>CO₂ 100%</td>
<td>.024” (0.6 mm)</td>
<td>Min/20</td>
<td>1.5/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C25 75% Ar / 25% CO₂</td>
<td>.030” (0.8 mm)</td>
<td>Min/10</td>
<td>1.5/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.035” (0.9 mm)</td>
<td>5/10</td>
<td>1.5/15</td>
</tr>
<tr>
<td></td>
<td>Flux Core E71T–11 (DCEN)</td>
<td>No gas required</td>
<td>.030” (0.8 mm)</td>
<td>Min/20</td>
<td>2/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.035” (0.9 mm)</td>
<td>Min/10</td>
<td>2/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min/5</td>
<td>2/15</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Stainless Steel (DCEP)</td>
<td>Tri–Mix 90% He / 7.5% Ar / 2.5% CO₂</td>
<td>.024” (0.6 mm)</td>
<td>1.5 / 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.030” (0.8 mm)</td>
<td>Min/20</td>
<td>1.5/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.035” (0.9 mm)</td>
<td>Min/10</td>
<td>1.5/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min/5</td>
<td>1.5/15</td>
</tr>
</tbody>
</table>

Selecting Wire, Gas and Control Settings for Aluminum with 24 ga. 115/230V, 20/22 ga. 115/230V

<table>
<thead>
<tr>
<th>Material Spool Gun</th>
<th>Material Spool Gun</th>
<th>100% Argon</th>
<th>Wire Size (Diameter)</th>
<th>24 ga. 115/230V</th>
<th>20/22 ga. 115/230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Aluminum</td>
<td>100% Argon</td>
<td>.030” (0.8 mm)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Spool Gun 4043ER</td>
<td></td>
<td></td>
<td>.035” (0.9 mm)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Reference Key

- * 230 Volt Only
- ** For Flux Core or Stainless Wire
Selecting Wire, Gas and Control Settings

NOTE: Settings are approximate. Adjust as required.

"-----" Means not recommended.

Thicker materials can be welded using proper technique, joint preparation and multiple passes.

IMPORTANT: Match drive roll groove to diameter of wire being used.

Set Tension knob setting to 3 at start. Adjust tension per instructions in the manual.

![Table of wire diameters and settings]

optional Spool Gun. Order part no. 300371

![Table of wire diameters and settings]

M-10 (#195605) Torch Consumables:

<table>
<thead>
<tr>
<th>Nozzles:</th>
<th>Tip Adapter:</th>
<th>Contact Tips:</th>
<th>Liners:</th>
</tr>
</thead>
<tbody>
<tr>
<td>#169715</td>
<td>#169716</td>
<td>.024" (0.6 mm) #087299</td>
<td>.024" (0.6 mm) #194010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.030" (0.8 mm) #000067</td>
<td>.030 - .035" (0.8 - 0.9 mm) #194011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.035" (0.9 mm) #000068</td>
<td></td>
</tr>
</tbody>
</table>

Quick Change Dual Grooved Drive Rolls:

<table>
<thead>
<tr>
<th>Wire Diameters</th>
<th>V-Smooth</th>
<th>V-Knurled **</th>
</tr>
</thead>
<tbody>
<tr>
<td>.024" (0.6 mm)</td>
<td>#220179</td>
<td>#220179</td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td>#220179</td>
<td>#202926</td>
</tr>
<tr>
<td>.035" (0.9 mm)</td>
<td>#220179</td>
<td>#202926</td>
</tr>
</tbody>
</table>

P/N - 235557-A

Ref. 235 557-A
SECTION 6 – MAINTENANCE & TROUBLESHOOTING

6-1. Routine Maintenance

<table>
<thead>
<tr>
<th>Maintenance Task</th>
<th>Frequency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Damaged Or Unreadable Labels</td>
<td>Every 3 Months</td>
<td>☆</td>
</tr>
<tr>
<td>Repair Or Replace Cracked Weld Cable</td>
<td>Every 3 Months</td>
<td>☆</td>
</tr>
<tr>
<td>Clean And Tighten Weld Terminals</td>
<td>Every 3 Months</td>
<td>○</td>
</tr>
<tr>
<td>Inside Unit</td>
<td>Every 6 Months</td>
<td>○</td>
</tr>
<tr>
<td>Clean Drive Rolls</td>
<td>Every 6 Months</td>
<td>○</td>
</tr>
</tbody>
</table>

* To be done by Factory Authorized Service Agent

Reference every 3 months damanged or unreadable labels, repair or replace cracked weld cable, clean and tighten weld terminals, clean drive rolls, and clean and tighten inside unit.

6-2. Overload Protection

![Overload Protection Diagram](Ref. 803 809-D)

1. Supplementary Protector CB1

CB1 protects unit from overload. If CB1 opens, unit shuts down. Reset supplementary protector.
6-3. Changing Drive Roll Or Wire Inlet Guide

1 Inlet Wire Guide
Remove guide by pressing on barbed area or cutting off one end near housing and pulling it out of hole. Push new guide into hole from rear until it snaps in place.

2 Drive Roll
The drive roll consists of two different sized grooves. The stamped markings on the end surface of the drive roll refers to the groove on the opposite side of the drive roll. The groove closest to the motor shaft is the proper groove to thread (see Section 4-13).

3 Retaining Pin
To secure drive roll, locate open slot and push drive roll completely over retaining pin, then rotate drive roll 1/4 turn to closed slot.

6-4. Replacing Gun Contact Tip

⚠️ Turn Off power before replacing contact tip.

1 Nozzle
2 Contact Tip
Cut off welding wire at contact tip. Remove nozzle.
Remove contact tip and install new contact tip. Reinstall nozzle.

Tools Needed:
6-5. Cleaning Or Replacing Gun Liner

Disconnect gun from unit.

Tools Needed:
- 8 mm / 10 mm

Lay gun cable out straight before installing new liner.

Remove nozzle, contact tip, adapter, gas diffuser, and wire outlet guide.

To Reassemble Gun:
- Install and tighten new liner.
- Cut liner off 3/4 in (20 mm) (3/8 in [9.5 mm] for aluminum) from head tube.
- Install adapter, contact tip, and nozzle.
6-6. Replacing Switch And/Or Head Tube

Tools Needed:
- 19 mm wrench

1. Remove handle locking nut.
2. Remove switch housing. Install new switch and connect leads (polarity is not important). Reassemble in reverse order. If replacing head tube, continue to end of figure.
3. Slide handle.
4. Secure head tube in vice.
5. Loosen jam nut. Remove from vice and turn head tube out by hand.
6. Hand-tighten head tube into cable connector.
7. Place head tube in vice and tighten until nuts are tight.
8. Remove from vice. Reposition handle and install switch housing. Secure with handle locking nut.

⚠️ Turn Off welding power source and disconnect gun.

Ref. ST-800 795-C
SECTION 7 – ELECTRICAL DIAGRAM

WARNING
- Do not touch live electrical parts.
- Disconnect input power or stop engine before servicing.
- Do not operate with covers removed.
- Have only qualified persons install, use, or service this unit.

Figure 7-1. Circuit Diagram
8-1. Typical MIG Process Connections

> This unit can operate for either the internal or an external shielding gas supply.

⚠️ Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.
8-2. Typical MIG Process Control Settings

NOTE

These settings are guidelines only. Material and wire type, joint design, fitup, position, shielding gas, etc. affect settings. Test welds to be sure they comply to specifications.

Voltage controls height and width of weld bead.
Wire speed (amperage) controls weld penetration (wire speed = burn-off rate)

Low voltage: wire stubs into work
High voltage: arc is unstable (spatter)
Set voltage midway between high/low voltage.

Select voltage and wire feed speed from parameter chart located on inside of door.

Ref. 803 809-D
8-3. Holding And Positioning Welding Gun

NOTE

Welding wire is energized when gun trigger is pressed. Before lowering helmet and pressing trigger, be sure wire is no more than 1/2 in (13 mm) past end of nozzle, and tip of wire is positioned correctly on seam.

1. Hold Gun and Control Gun Trigger
2. Workpiece
3. Work Clamp
4. Electrode Extension (Stickout) 1/4 to 1/2 in (6 To 13 mm)
5. Cradle Gun and Rest Hand on Workpiece
8-4. Conditions That Affect Weld Bead Shape

NOTE

Weld bead shape depends on gun angle, direction of travel, electrode extension (stickout), travel speed, thickness of base metal, wire feed speed (weld current), and voltage.

GUN ANGLES AND WELD BEAD PROFILES

- **Push**
- **Perpendicular**
- **Drag**

ELECTRODE EXTENSIONS (STICKOUT)

- **Short**
- **Normal**
- **Long**

FILLET WELD ELECTRODE EXTENSIONS (STICKOUT)

- **Short**
- **Normal**
- **Long**

GUN TRAVEL SPEED

- **Slow**
- **Normal**
- **Fast**
8-5. Gun Movement During Welding

NOTE

Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads works better.

1. Stringer Bead – Steady Movement Along Seam
2. Weave Bead – Side To Side Movement Along Seam
3. Weave Patterns
Use weave patterns to cover a wide area in one pass of the electrode.

8-6. Poor Weld Bead Characteristics

1. Large Spatter Deposits
2. Rough, Uneven Bead
3. Slight Crater During Welding
4. Bad Overlap
5. Poor Penetration

8-7. Good Weld Bead Characteristics

1. Fine Spatter
2. Uniform Bead
3. Moderate Crater During Welding
Weld a new bead or layer for each 1/8 in (3.2 mm) thickness in metals being welded.
4. No Overlap
5. Good Penetration into Base Metal
8-8. Troubleshooting – Excessive Spatter

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed speed too high.</td>
<td>Select lower wire feed speed.</td>
</tr>
<tr>
<td>Voltage too high.</td>
<td>Select lower voltage range.</td>
</tr>
<tr>
<td>Electrode extension (stickout) too long.</td>
<td>Use shorter electrode extension (stickout).</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pickup of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer’s recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>

8-9. Troubleshooting – Porosity

Porosity – small cavities or holes resulting from gas pockets in weld metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td></td>
<td>Remove spatter from gun nozzle.</td>
</tr>
<tr>
<td></td>
<td>Check gas hoses for leaks.</td>
</tr>
<tr>
<td></td>
<td>Place nozzle 1/4 to 1/2 in (6-13 mm) from workpiece.</td>
</tr>
<tr>
<td></td>
<td>Hold gun near bead at end of weld until molten metal solidifies.</td>
</tr>
<tr>
<td>Wrong gas.</td>
<td>Use welding grade shielding gas; change to different gas.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pick up of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, and dirt from work surface before welding.</td>
</tr>
<tr>
<td></td>
<td>Use a more highly deoxidizing welding wire (contact supplier).</td>
</tr>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer’s recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>
8-10. Troubleshooting – Excessive Penetration

Excessive Penetration – weld metal melting through base metal and hanging underneath weld.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer's recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>

8-11. Troubleshooting – Lack Of Penetration

Lack Of Penetration – shallow fusion between weld metal and base metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper joint preparation.</td>
<td>Material too thick. Joint preparation and design must provide access to bottom of groove while maintaining proper welding wire extension and arc characteristics.</td>
</tr>
<tr>
<td>Improper weld technique.</td>
<td>Maintain normal gun angle of 0 to 15 degrees to achieve maximum penetration.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher wire feed speed and/or select higher voltage range.</td>
</tr>
<tr>
<td></td>
<td>Reduce travel speed.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer's recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>

8-12. Troubleshooting – Incomplete Fusion

Incomplete Fusion – failure of weld metal to fuse completely with base metal or a preceeding weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher voltage range and/or adjust wire feed speed.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding.</td>
</tr>
<tr>
<td></td>
<td>Adjust work angle or widen groove to access bottom during welding.</td>
</tr>
<tr>
<td></td>
<td>Momentarily hold arc on groove side walls when using weaving technique.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Use correct gun angle of 0 to 15 degrees.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer's recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>
8-13. Troubleshooting – Burn-Through

Burn-Through – weld metal melting completely through base metal resulting in holes where no metal remains.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase and/or maintain steady travel speed.</td>
</tr>
<tr>
<td>Wrong polarity.</td>
<td>Configure polarity as shown in Section 4-4. Always read and follow wire manufacturer’s recommended polarity, and see Section 4-3.</td>
</tr>
</tbody>
</table>

S-0640

8-14. Troubleshooting – Waviness Of Bead

Waviness Of Bead – weld metal that is not parallel and does not cover joint formed by base metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Unsteady hand.</td>
<td>Support hand on solid surface or use two hands.</td>
</tr>
</tbody>
</table>

S-0641

8-15. Troubleshooting – Distortion

Distortion – contraction of weld metal during welding that forces base metal to move.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Use restraint (clamp) to hold base metal in position.</td>
</tr>
<tr>
<td></td>
<td>Make tack welds along joint before starting welding operation.</td>
</tr>
<tr>
<td></td>
<td>Select lower voltage range and/or reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
<tr>
<td></td>
<td>Weld in small segments and allow cooling between welds.</td>
</tr>
</tbody>
</table>

S-0642
8-16. Common MIG Shielding Gases

This is a general chart for common gases and where they are used. Many different combinations (mixtures) of shielding gases have been developed over the years. The most commonly used shielding gases are listed in the following table.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spray Arc Steel</td>
</tr>
<tr>
<td>Argon</td>
<td>All Positions</td>
</tr>
<tr>
<td>Argon + 25% CO₂</td>
<td>Flat & Horizontal Fillet</td>
</tr>
<tr>
<td></td>
<td>All Positions</td>
</tr>
<tr>
<td></td>
<td>All Positions²</td>
</tr>
<tr>
<td>CO₂</td>
<td>Flat & Horizontal Fillet</td>
</tr>
<tr>
<td></td>
<td>All Positions</td>
</tr>
<tr>
<td>Tri-Mix³</td>
<td>All Positions</td>
</tr>
</tbody>
</table>

1. Globular Transfer
2. Single Pass Welding Only
3. 90% HE + 7-1/2% AR + 2-1/2% CO₂
SECTION 9 – PARTS LIST

9-1. Recommended Spare Parts

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>169 715</td>
<td>NOZZLE, slip type .500 or flush</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>♦ 087 299</td>
<td>TIP, contact scr .023 wire x 1.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ 000 067</td>
<td>TIP, contact scr .030 wire x 1.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ 000 068</td>
<td>TIP, contact scr .035 wire x 1.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ 000 069</td>
<td>TIP, contact scr .045 wire x 1.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ 194 010</td>
<td>LINER, monocoil .023/.025 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>♦ 194 011</td>
<td>LINER, monocoil .030/.035 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>♦ 194 012</td>
<td>LINER, monocoil .035/.045 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>♦ 079 975</td>
<td>O-RING, .187 ID x .103CS rbr</td>
<td>1</td>
</tr>
</tbody>
</table>

♦ OPTIONAL
To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.

9-2. Drive Rolls

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>WIRE DIAMETER INCHES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 179</td>
<td>.024 (.6) and .030/.035 (.8 and .9) (Standard)</td>
</tr>
<tr>
<td>202 926</td>
<td>.030/.035 (.8 and .9) and .045 (1.2 VK Groove)</td>
</tr>
</tbody>
</table>

9-3. Options

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>195 605</td>
<td>M-10 Replacement Gun</td>
<td>10 ft length/.030-.035 wire size</td>
</tr>
</tbody>
</table>

A complete Parts List is available on-line at www.MillerWelds.com
Warranty Questions?

Call 1-800-4-A-MILLER for your local Miller distributor.

Your distributor also gives you...

Service
You always get the fast, reliable response you need. Most replacement parts can be in your hands in 24 hours.

Support
Need fast answers to the tough welding questions? Contact your distributor. The expertise of the distributor and Miller is there to help you, every step of the way.

LIMITED WARRANTY — Subject to the terms and conditions below, Miller Electric Mfg. Co., Appleton, Wisconsin, warrants to the original retail purchaser that new Miller equipment sold after the effective date of this limited warranty is free of defects in material and workmanship at the time it is shipped by Miller. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS.

Within the warranty periods listed below, Miller will repair or replace any warranted parts or components that fail due to such defects in material or workmanship. Miller must be notified in writing within thirty (30) days of such defect or failure, at which time Miller will provide instructions on the warranty claim procedures to be followed.

Miller shall honor warranty claims on warranted equipment listed below in the event of such a failure within the warranty time periods. All warranty time periods start on the delivery date of the equipment to the original end-user purchaser, and not to exceed one year after the equipment is shipped to a North American distributor or eighteen months after the equipment is shipped to an international distributor.

1. 5 Years Parts — 3 Years Labor
 * Original main power rectifiers only to include SCRs, diodes, and discrete rectifier modules
2. 3 Years — Parts and Labor
 * Engine Driven Welding Generators
 (NOTE: Engines are warranted separately by the engine manufacturer.)
 * Inverter Power Sources (Unless Otherwise Stated)
 * Plasma Arc Cutting Power Sources
 * Process Controllers
 * Semi-Automatic and Automatic Wire Feeders
 * Smith 30 Series Flowgauge and Flowmeter Regulators (No Labor)
 * Transformer/Rectifier Power Sources
 * Water Coolant Systems (Integrated)
3. 2 Years — Parts
 * Auto-Darkening Helmet Lenses (No Labor)
4. 1 Year — Parts and Labor Unless Specified
 * Automatic Motion Devices
 * CoolBelt and CoolBand Blower Unit (No Labor)
 * External Monitoring Equipment and Sensors
 * Field Options
 (NOTE: Field options are covered for the remaining warranty period of the product they are installed in, or for a minimum of one year — whichever is greater.)
 * Flowgauge and Flowmeter Regulators (No Labor)
 * RFCS Foot Controls (Except RFCS-RJ45)
 * Fume Extractors
 * HF Units
 * ICE Plasma Cutting Torches (No Labor)
 * Induction Heating Power Sources, Coolers, and Electronic Controls/Recorders
 * Load Banks
 * Motor Driven Guns (w/exception of Spoolmate Spoolguns)
 * PAPR Blower Unit (No Labor)
 * Positioners and Controllers
 * Rails
 * Running Gear/Trailers
 * Spot Welders
 * Subarc-Wire Drive Assemblies
 * Water Coolant Systems (Non-Integrated)
 * Weldcraft-Branded TIG Torches (No Labor)
 * Work Stations/Weld Tables (No Labor)
5. 6 Months — Parts
 * Batteries
 * Bernard Guns (No Labor)
 * Tregaskiss Guns (No Labor)
6. 90 Days — Parts
 * Accessory (Kits)
 * Canvas Covers
 * Induction Heating Coils and Blankets, Cables, and Non-Electronic Controls
 * M-Guns
 * MIG Guns and Subarc (SAW) Guns
 * Remote Controls and RFCS-RJ45
 * Replacement Parts (No labor)
 * Roughneck Parts
 * Spoolmate Spoolguns

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, relays, work station table tops and welding curtains, or parts that fail due to normal wear. (Exception: brushes and relays are covered on all engine-driven products.)
2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.
3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B., Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, THE REMEDIES PROVIDED HEREIN ARE THE SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL MILLER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFIT), WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

ANY EXPRESS WARRANTY NOT PROVIDED HEREIN AND ANY IMPLIED WARRANTY, GUARANTY OR REPRESENTATION AS TO PERFORMANCE, AND ANY REMEDY FOR BREACH OF CONTRACT TORT OR ANY OTHER LEGAL THEORY WHICH, BUT FOR THIS PROVISION, MIGHT ARISE BY IMPLICATION, OPERATION OF LAW, CUSTOM OF TRADE OR COURSE OF DEALING, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE, WITH RESPECT TO ANY AND ALL EQUIPMENT FURNISHED BY MILLER IS EXCLUDED AND DISCLAIMED BY MILLER.

Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.
Owner’s Record

Please complete and retain with your personal records.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Serial/Style Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>(Date which equipment was delivered to original customer.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Service

Contact a DISTRIBUTOR or SERVICE AGENCY near you.

Always provide Model Name and Serial/Style Number.

Contact your Distributor for:
- Welding Supplies and Consumables
- Options and Accessories
- Personal Safety Equipment
- Service and Repair
- Replacement Parts
- Training (Schools, Videos, Books)
- Technical Manuals (Servicing Information and Parts)
- Circuit Diagrams
- Welding Process Handbooks

To locate a Distributor or Service Agency visit www.millerwelds.com or call 1-800-4-A-Miller

Contact the Delivering Carrier to:
- File a claim for loss or damage during shipment.

For assistance in filing or settling claims, contact your distributor and/or equipment manufacturer's Transportation Department.