Processes

- Stick (SMAW) Welding
- MIG (GMAW) Welding
- Flux Cored (FCAW) Welding
- Non-Critical TIG (GTAW) Welding

Description

Engine Driven Welding Generator

Bobcat 250

OWNER’S MANUAL

Visit our website at www.MillerWelds.com
Thank you and congratulations on choosing Miller. Now you can get the job done and get it done right. We know you don’t have time to do it any other way.

That’s why when Niels Miller first started building arc welders in 1929, he made sure his products offered long-lasting value and superior quality. Like you, his customers couldn’t afford anything less. Miller products had to be more than the best they could be. They had to be the best you could buy.

Today, the people that build and sell Miller products continue the tradition. They’re just as committed to providing equipment and service that meets the high standards of quality and value established in 1929.

This Owner’s Manual is designed to help you get the most out of your Miller products. Please take time to read the Safety precautions. They will help you protect yourself against potential hazards on the worksite.

We’ve made installation and operation quick and easy. With Miller you can count on years of reliable service with proper maintenance. And if for some reason the unit needs repair, there’s a Troubleshooting section that will help you figure out what the problem is. The parts list will then help you to decide the exact part you may need to fix the problem. Warranty and service information for your particular model are also provided.

Miller Electric manufactures a full line of welders and welding related equipment. For information on other quality Miller products, contact your local Miller distributor to receive the latest full line catalog or individual specification sheets. To locate your nearest distributor or service agency call 1-800-4-A-Miller, or visit us at www.MillerWelds.com on the web.
TABLE OF CONTENTS

SECTION 1 – SAFETY PRECAUTIONS – READ BEFORE USING

1-1. Symbol Usage .. 1
1-2. Arc Welding Hazards ... 1
1-3. Engine Hazards ... 3
1-4. Hydraulic Hazards .. 4
1-5. Compressed Air Hazards ... 4
1-6. Additional Symbols For Installation, Operation, And Maintenance ... 5
1-7. California Proposition 65 Warnings 6
1-8. Principal Safety Standards ... 7
1-9. EMF Information ... 7

SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION

2-1. Signification des symboles ... 8
2-2. Dangers relatifs au soudage à l’arc 8
2-3. Dangers existant en relation avec le moteur 10
2-4. Dangers liés à l’hydraulique 11
2-5. Dangers liés à l’air comprimé 12
2-6. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance 13
2-7. Proposition californienne 65 Avertissements 14
2-8. Principales normes de sécurité 15
2-9. Informations relatives aux CEM 15

SECTION 3 – DEFINITIONS ... 16

SECTION 4 – SPECIFICATIONS ... 17

4-1. Weld, Power, and Carbureted Engine Specifications (Subaru EH-65, Kohler CH-23) 17
4-2. Weld, Power, And EFI Engine Specifications (Kohler ECH-730) .. 17
4-3. Dimensions, Weights, And Operating Angles 18
4-4. Dimensions For Units With Optional Running Gear 19
4-5. Duty Cycle ... 19
4-6. Fuel Consumption (Subaru-Powered Units) 20
4-7. Fuel Consumption (Kohler-Powered Units) 20
4-8. Volt-Ampere Curves ... 21
4-9. Generator Power Curve ... 22

SECTION 5 – INSTALLATION .. 23

5-1. Serial Number And Rating Label Location 23
5-2. Installing Welding Generator 23
5-3. Grounding Generator To Truck Or Trailer Frame 24
5-4. Installing Exhaust Pipe .. 24
5-5. Connecting Or Replacing The Battery 25
5-6. Electronic Fuel Injection (EFI) System And Battery Information ... 25
5-7. Engine Prestart Checks (Subaru-Powered Units) 26
5-8. Engine Prestart Checks (Kohler-Powered Units) 27
5-9. Weld Output Terminals .. 28
5-10. Connecting To Weld Output Terminals 28
5-11. Selecting Weld Cable Sizes* 29

SECTION 6 – OPERATING THE WELDING GENERATOR 30

6-1. Front Panel Controls (See Section 6-2) 30
6-2. Description Of Controls (See Section 6-1) 31
6-3. Cold Weather Engine Operation 31
6-4. Typical Stick Welding Connections And Control Settings ... 32
6-5. Typical MIG Welding Connections And Settings 33
6-6. Typical MIG Connections And Settings Using Weld Control And Spoolgun 35
TABLE OF CONTENTS

SECTION 7 – OPERATING AUXILIARY EQUIPMENT .. 36
 7-1. Generator Power Receptacles ... 36
 7-2. Simultaneous Weld And Power .. 37
 7-3. Wiring Optional 240 Volt Plug .. 37

SECTION 8 – MAINTENANCE ... 38
 8-1. Routine Maintenance .. 38
 8-2. Maintenance Label ... 39
 8-3. Servicing Optional Spark Arrestor ... 40
 8-4. Servicing Air Cleaner ... 40
 8-5. Overload Protection .. 41
 8-6. Electronic Fuel Injection (EFI) System And Servicing Information 41
 8-7. Changing Engine Oil, Oil Filter, and Fuel Filter (Subaru-Powered Units) .. 42
 8-8. Changing Engine Oil, Oil Filter, And Fuel Filter (Kohler-Powered Units) .. 43
 8-9. Adjusting Engine Speed (Kohler Carbureted Units [CH-23]) 44
 8-10. Adjusting Engine Speed (Kohler EFI Units [ECH-730]) 45
 8-11. Adjusting Engine Speed (Subaru-Powered Units) 46

SECTION 9 – TROUBLESHOOTING ... 47
 9-1. Welding Troubleshooting .. 47
 9-2. Generator Power Troubleshooting ... 47
 9-3. Engine Troubleshooting ... 48

SECTION 10 – PARTS LIST .. 49
 10-1. Recommended Spare Parts ... 49

SECTION 11 – ELECTRICAL DIAGRAMS ... 50

SECTION 12 – GENERATOR POWER GUIDELINES 52

SECTION 13 – STICK WELDING (SMAW) GUIDELINES 59

SECTION 14 – MIG WELDING (GMAW) GUIDELINES 66

COMPLETE PARTS LIST - www.MillerWelds.com

WARRANTY
SECTION 1 – SAFETY PRECAUTIONS – READ BEFORE USING

Protect yourself and others from injury — read, follow, and save these important safety precautions and operating instructions.

1-1. Symbol Usage

- **DANGER!** - Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.
- **WARNING!** - Indicates a hazardous situation which, if not avoided, could result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

NOTICE – Indicates statements not related to personal injury.

Indicates special instructions.

- This group of symbols means Warning! Watch Out! ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards. Consult symbols and related instructions below for necessary actions to avoid the hazards.

1-2. Arc Welding Hazards

The symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-8. Read and follow all Safety Standards.

Indicates statements not related to personal injury.

Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

NOTICE – Indicates statements not related to personal injury.

Only qualified persons should install, operate, maintain, and repair this unit.

During operation, keep everybody, especially children, away.

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- Do not touch live electrical parts.
- Wear dry, hole-free insulating gloves and body protection.
- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.
- Do not use AC output in damp areas, if movement is confined, or if covers big enough to prevent any physical contact with the work or ground.
- Use AC output ONLY if required for the welding process.
- If AC output is required, use remote output control if present on unit.

Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when in cramped positions such as sitting, kneeling, or lying; or when there is a high risk of unavoidable or accidental contact with the workpiece or ground.

For these conditions, use the following equipment in order presented: 1) a semiautomatic DC constant voltage (wire) welder, 2) a DC manual (stick) welder, or 3) an AC welder with reduced open-circuit voltage. In most situations, use of a DC, constant voltage wire welder is recommended. And, do not work alone!

- Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards). Properly install and ground this equipment according to its Owner's Manual and national, state, and local codes.

- Always verify the supply ground — check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.
- When making input connections, attach proper grounding conductor first — double-check connections.
- Keep cords dry, free of oil and grease, and protected from hot metal and sparks.
- Frequently inspect input power cord for damage or bare wiring — replace cord immediately if damaged — bare wiring can kill.
- Turn off all equipment when not in use.
- Do not use worn, damaged, undersized, or poorly spliced cables.
- Do not drape cables over your body.
- If earth grounding of the workpiece is required, ground it directly with a separate cable.
- Do not touch electrode if you are in contact with the work, ground, or another electrode from a different machine.
- Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.
- Do not touch electrode holders connected to two welding machines at the same time since double open-circuit voltage will be present.
- Wear a safety harness if working above floor level.
- Keep all panels and covers securely in place.
- Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.
- Insulate work clamp when not connected to workpiece to prevent contact with any metal object.
- Do not connect more than one electrode or work cable to any single weld output terminal.

SIGNIFICANT DC VOLTAGE exists in inverter power sources AFTER stopping engine.

- Stop engine on inverter and discharge input capacitors according to instructions in Maintenance Section before touching any parts.

HOT PARTS can burn.

- Do not touch hot parts bare handed.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.

FLYING METAL or DIRT can injure eyes.

- Welding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.
- Wear approved safety glasses with side shields even under your welding helmet.

ROM_2010-03
FUMES AND GASES can be hazardous.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding fumes and gases.
- If ventilation is poor, wear an approved air-supplied respirator.
- Read and understand the Material Safety Data Sheets (MSDSs) and the manufacturer’s instructions for metals, consumables, coatings, cleaners, and degreasers.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watchperson nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
- Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.
- Shut off shielding gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

BUILDUP OF GAS can injure or kill.

- Wear approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash, glare, and sparks; warn others not to watch the arc.
- Wear protective clothing made from durable, flame-resistant material (leather, heavy cotton, or wool) and foot protection.

ARC RAYS can burn eyes and skin.

Arc rays from the welding process produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.

- Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash, glare, and sparks; warn others not to watch the arc.
- Wear protective clothing made from durable, flame-resistant material (leather, heavy cotton, or wool) and foot protection.

WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Do not weld where flying sparks can strike flammable material.
- Protect yourself and others from flying sparks and hot metal.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.

- Do not weld on closed containers such as tanks, drums, or pipes, unless they are properly prepared according to AWS F4.1 (see Safety Standards).
- Do not weld where the atmosphere may contain flammable dust, gas, or liquid vapors (such as gasoline).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.
- Do not use welder to thaw frozen pipes.
- Remove stick electrode from holder or cut off welding wire at contact tip when not in use.
- Wear oil-free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.
- Remove any combustibles, such as a butane lighter or matches, from your person before doing any welding.
- After completion of work, inspect area to ensure it is free of sparks, glowing embers, and flames.
- Use only correct fuses or circuit breakers. Do not oversize or bypass them.
- Follow requirements in OSHA 1910.252 (a) (2) (iv) and NFPA 51B for hot work and have a fire watcher and extinguisher nearby.

NOISE can damage hearing.

Noise from some processes or equipment can damage hearing.

- Wear approved ear protection if noise level is high.

ELECTRIC AND MAGNETIC FIELDS (EMF) can affect Implanted Medical Devices.

- Wearers of Pacemakers and other Implanted Medical Devices should keep away.
- Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.

CYLINDERS can explode if damaged.

Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

- Protect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.
1-3. Engine Hazards

BATTERY EXPLOSION can injure.
- Always wear a face shield, rubber gloves, and protective clothing when working on a battery.
- Stop engine before disconnecting or connecting battery cables, battery charging cables (if applicable), or servicing battery.
- Do not allow tools to cause sparks when working on a battery.
- Do not use welder to charge batteries or jump start vehicles unless the unit has a battery charging feature designed for this purpose.
- Observe correct polarity (+ and −) on batteries.
- Disconnect negative (−) cable first and connect it last.
- Keep sparks, flames, cigarettes, and other ignition sources away from batteries. Batteries produce explosive gases during normal operation and when being charged.
- Follow battery manufacturer’s instructions when working on or near a battery.

BATTERY CHARGING OUTPUT can injure.
(Battery charging feature not present on all models.)
- Have only qualified persons do battery charging work.
- Charge lead-acid batteries only. Do not use battery charger to supply power to an extra-low-voltage electrical system or to charge dry cell batteries.
- Do not charge a frozen battery.
- Do not use damaged charging cables.
- Do not charge a battery that has loose terminals or one showing damage such as a cracked case or cover.
- Before charging battery, select correct charger voltage to match battery voltage.
- Set battery charging controls to the Off position before connecting to battery. Do not allow battery charging clips to touch each other.
- Keep charging cables away from vehicle hood, door, or moving parts.

FUEL can cause fire or explosion.
- Stop engine and let it cool off before checking or adding fuel.
- Do not add fuel while smoking or if unit is near any sparks or open flames.
- Do not overfill tank — allow room for fuel to expand.
- Do not spill fuel. If fuel is spilled, clean up before starting engine.
- Dispose of rags in a fireproof container.
- Always keep nozzle in contact with tank when fueling.

MOVING PARTS can injure.
- Keep away from moving parts such as fans, belts, and rotors.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Stop engine before installing or connecting unit.
- Have only qualified persons remove doors, panels, covers, or guards for maintenance and troubleshooting as necessary.
- To prevent accidental starting during servicing, disconnect negative (−) battery cable from battery.
- Keep hands, hair, loose clothing, and tools away from moving parts.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting engine.
- Before working on generator, remove spark plugs or injectors to keep engine from kicking back or starting.
- Block flywheel so that it will not turn while working on generator components.

EXHAUST SPARKS can cause fire.
- Do not let engine exhaust sparks cause fire.
- Use approved engine exhaust spark arrestor in required areas — see applicable codes.

HOT PARTS can burn.
- Do not touch hot parts bare handed.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.

STEAM AND HOT COOLANT can burn.
- If possible, check coolant level when engine is cold to avoid scalding.
- Always check coolant level at overflow tank, if present on unit, instead of radiator (unless told otherwise in maintenance section or engine manual).
- If the engine is warm, checking is needed, and there is no overflow tank, follow the next two statements.
- Wear safety glasses and gloves and put a rag over radiator cap.
- Turn cap slightly and let pressure escape slowly before completely removing cap.

Using a generator outdoors CAN KILL YOU IN MINUTES.
- Generator exhaust contains carbon monoxide. This is a poison you cannot see or smell.
- NEVER use inside a home or garage, EVEN IF doors and windows are open.
- Only use OUTSIDE and far away from windows, doors, and vents.

BATTERY ACID can BURN SKIN and EYES.
- Do not tip battery.
- Replace damaged battery.
- Flush eyes and skin immediately with water.

ENGINE HEAT can cause fire.
- Do not locate unit on, over, or near combustible surfaces or flammables.
- Keep exhaust and exhaust pipes way from flammables.
1-4. Hydraulic Hazards

HYDRAULIC EQUIPMENT can injure or kill.
- Incorrect installation or operation of this unit could result in equipment failure and personal injury. Only qualified persons should install, operate, and service this unit according to its Owner’s Manual, industry standards, and national, state, and local codes.
- Do not exceed the rated output or capacity of the hydraulic pump or any equipment in the hydraulic system. Design hydraulic system so failure of any hydraulic component will not put people or property at risk.
- Before working on hydraulic system, turn off and lockout/tagout unit, release pressure, and be sure hydraulic pressure cannot be accidentally applied.
- Do not work on hydraulic system with unit running unless you are a qualified person and following the manufacturer’s instructions.
- Do not modify or alter hydraulic pump or manufacturer-supplied equipment. Do not disconnect, disable, or override any safety equipment in the hydraulic system.
- Use only components/accessories approved by the manufacturer.
- Keep away from potential pinch points or crush points created by equipment connected to the hydraulic system.
- Do not work under or around any equipment that is supported only by hydraulic pressure. Properly support equipment by mechanical means.

HYDRAULIC FLUID can injure or kill.
- Before working on hydraulic system, turn off and lockout/tagout unit, release pressure, and be sure hydraulic pressure cannot be accidentally applied.
- Relieve pressure before disconnecting or connecting hydraulic lines.
- Check hydraulic system components and all connections and hoses for damage, leaks, and wear before operating unit.
- Wear protective equipment such as safety glasses, leather gloves, heavy shirt and trousers, high shoes, and a cap when working on hydraulic system.
- Use a piece of paper or cardboard to search for leaks—never use bare hands. Do not use equipment if leaks are found.

MOVING PARTS can injure.
- Keep away from moving parts such as fans, belts and rotors.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Keep hands, hair, loose clothing, and tools away from moving parts.
- Before working on hydraulic system, turn off and lockout/tagout unit, release pressure, and be sure hydraulic pressure cannot be accidentally applied.
- Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting engine.

HOT PARTS AND FLUID can burn.
- Do not touch hot parts bare handed or allow hot fluid to contact skin.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

1-5. Compressed Air Hazards

COMPRESSED AIR EQUIPMENT can injure or kill.
- Incorrect installation or operation of this unit could result in equipment failure and personal injury. Only qualified persons should install, operate, and service this unit according to its Owner’s Manual, industry standards, and national, state, and local codes.
- Do not exceed the rated output or capacity of the compressor or any equipment in the compressed air system. Design compressed air system so failure of any component will not put people or property at risk.
- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.

COMPRESSED AIR can injure or kill.
- Do not exceed the rated output or capacity of the compressor or any equipment in the compressed air system. Design compressed air system so failure of any component will not put people or property at risk.
- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.
- Do not exceed the rated output or capacity of the hydraulic pump or any equipment in the hydraulic system. Design hydraulic system so failure of any hydraulic component will not put people or property at risk.
- Before working on hydraulic system, turn off and lockout/tagout unit, release pressure, and be sure hydraulic pressure cannot be accidentally applied.

HYDRAULIC FLUID is FLAMMABLE—do not work on hydraulics near sparks or flames; do not smoke near hydraulic fluid.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting unit.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

COMPRESSED AIR can injure or kill.
- Do not exceed the rated output or capacity of the compressor or any equipment in the compressed air system. Design compressed air system so failure of any component will not put people or property at risk.
- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

COMPRESSED AIR can injure or kill.
- Do not exceed the rated output or capacity of the compressor or any equipment in the compressed air system. Design compressed air system so failure of any component will not put people or property at risk.
- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.

HYDRAULIC FLUID is FLAMMABLE—do not work on hydraulics near sparks or flames; do not smoke near hydraulic fluid.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting unit.
- If ANY fluid is injected into the skin, it must be surgically removed within a few hours by a doctor familiar with this type of injury or gangrene may result.

MOVING PARTS can injure.
- Keep away from moving parts such as fans, belts and rotors.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Keep hands, hair, loose clothing, and tools away from moving parts.
- Before working on hydraulic system, turn off and lockout/tagout unit, release pressure, and be sure hydraulic pressure cannot be accidentally applied.
- Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting engine.

HOT PARTS AND FLUID can burn.
- Do not touch hot parts bare handed or allow hot fluid to contact skin.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.
HOT METAL from air arc cutting and gouging can cause fire or explosion.

- Do not cut or gouge near flammables.
- Watch for fire; keep extinguisher nearby.

COMPRESSED AIR can injure or kill.

- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.
- Relieve pressure before disconnecting or connecting air lines.
- Check compressed air system components and all connections and hoses for damage, leaks, and wear before operating unit.

- Do not direct air stream toward self or others.
- Wear protective equipment such as safety glasses, hearing protection, leather gloves, heavy shirt and trousers, high shoes, and a cap when working on compressed air system.
- Use soapy water or an ultrasonic detector to search for leaks—never use bare hands. Do not use equipment if leaks are found.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting unit.
- If ANY air is injected into the skin or body seek medical help immediately.

BREATHING COMPRESSED AIR can injure or kill.

- Do not use compressed air for breathing.
- Use only for cutting, gouging, and tools.

TRAPPED AIR PRESSURE AND WHIPPING HOSES can injure.

- Release air pressure from tools and system before servicing, adding or changing attachments, or opening compressor oil drain or oil fill cap.

1-6. **Additional Symbols For Installation, Operation, And Maintenance**

FIRE OR EXPLOSION hazard.

- Do not install or place unit on, over, or near combustible surfaces.
- Do not install unit near flammables.
- Do not overload building wiring – be sure power supply system is properly sized, rated, and protected to handle this unit.

FALLING EQUIPMENT can injure.

- Use lifting eye to lift unit and properly installed accessories only, NOT gas cylinders. Do not exceed maximum lift eye weight rating (see Specifications).
- Use equipment of adequate capacity to lift and support unit.
- If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit.
- Keep equipment (cables and cords) away from moving vehicles when working from an aerial location.
- Follow the guidelines in the Applications Manual for the Revised NIOSH Lifting Equation (Publication No. 94–110) when manually lifting heavy parts or equipment.

MOVING PARTS can injure.

- Keep away from moving parts such as fans, belts and rotors.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Keep hands, hair, loose clothing, and tools away from moving parts.
- Before working on compressed air system, turn off and lockout/tagout unit, release pressure, and be sure air pressure cannot be accidentally applied.
- Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when servicing is finished and before starting engine.

HOT PARTS can burn.

- Do not touch hot compressor or air system parts.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.

READ INSTRUCTIONS.

- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.

- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

OVERHEATING can damage motors.

- Turn off or unplug equipment before starting or stopping engine.
- Do not let low voltage and frequency caused by low engine speed damage electric motors.
- Do not connect 50 or 60 Hertz motors to the 100 Hertz receptacle where applicable.

FLYING SPARKS can injure.

- Wear a face shield to protect eyes and face.
- Shape tungsten electrode only on grinder with proper guards in a safe location wearing proper face, hand, and body protection.
- Sparks can cause fires — keep flammables away.

MOVING PARTS can injure.

- Keep away from moving parts.
- Keep away from pinch points such as drive rolls.
WELDING WIRE can injure.
- Do not press gun trigger until instructed to do so.
- Do not point gun toward any part of the body, other people, or any metal when threading welding wire.

OVERUSE can cause OVERHEATING.
- Allow cooling period; follow rated duty cycle.
- Reduce current or reduce duty cycle before starting to weld again.
- Do not block or filter airflow to unit.

STATIC (ESD) can damage PC boards.
- Put on grounded wrist strap BEFORE handling boards or parts.
- Use proper static-proof bags and boxes to store, move, or ship PC boards.

TILTING OF TRAILER can injure.
- Use tongue jack or blocks to support weight.
- Properly install welding generator onto trailer according to instructions supplied with trailer.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
 - Use only genuine replacement parts from the manufacturer.
 - Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

H.F. RADIATION can cause interference.
- High-frequency (H.F.) can interfere with radio navigation, safety services, computers, and communications equipment.
- Have only qualified persons familiar with electronic equipment perform this installation.
 - The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
 - If notified by the FCC about interference, stop using the equipment at once.
 - Have the installation regularly checked and maintained.
 - Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.

ARC WELDING can cause interference.
- Electromagnetic energy can interfere with sensitive electronic equipment such as microprocessors, computers, and computer-driven equipment such as robots.
 - To reduce possible interference, keep weld cables as short as possible, close together, and down low, such as on the floor.
 - Locate welding operation 100 meters from any sensitive electronic equipment.
 - Be sure this welding machine is installed and grounded according to this manual.
 - If interference still occurs, the user must take extra measures such as moving the welding machine, using shielded cables, using line filters, or shielding the work area.

1-7. California Proposition 65 Warnings

⚠️ Welding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)

⚠️ Battery posts, terminals and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. Wash hands after handling.

⚠️ This product contains chemicals, including lead, known to the state of California to cause cancer, birth defects, or other reproductive harm. Wash hands after use.

For Gasoline Engines:

⚠️ Engine exhaust contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

For Diesel Engines:

⚠️ Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.
1-8. **Principal Safety Standards**

Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1, from Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly, VA 20151 (phone: 703-788-2700, website:www.cganet.com).

For Standards about hydraulic systems, contact the National Fluid Power Association, Publications Department, 3333 North Mayfair Road, Suite 211, Milwaukee, WI 53222-3219 (phone: (414) 778-3344, website: www.nfpa.com).

1-9. **EMF Information**

Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). Welding current creates an EMF field around the welding circuit and welding equipment. EMF fields may interfere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, access restrictions for passers--by or individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

1. Keep cables close together by twisting or taping them, or using a cable cover.
2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld whilst carrying the welding power source or wire feeder.

About Implanted Medical Devices:

Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.
SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION

Pour écarter les risques de blessure pour vous–même et pour autrui — lire, appliquer et ranger en lieu sûr ces consignes relatives aux précautions de sécurité et au mode opératoire.

2-1. Signification des symboles

DANGER! - Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

NOTE – Indique des déclarations pas en relation avec des blessures personnelles.

2-2. Dangers relatifs au soudage à l’arc

Les symboles présentés ci-après sont utilisés tout au long du présent manuel pour attirer votre attention et identifier les risques de danger. Lorsque vous voyez un symbole, soyez vigilant et suivez les directives mentionnées afin d’éviter tout danger. Les consignes de sécurité présentées ci-après ne font que résumer l’information contenue dans les normes de sécurité énumérées à la section 1-8. Veuillez lire et respecter toutes ces normes de sécurité.

L’installation, l’utilisation, l’entretien et les réparations ne doivent être confiés qu’à des personnes qualifiées.

Au cours de l’utilisation, tenir toute personne à l’écart et plus particulièrement les enfants.

UN CHOC ÉLECTRIQUE peut tuer.

Un simple contact avec des pièces électriques peut provoquer une électrocution ou des blessures graves. L’électrode et le circuit de soudage sont sous tension dès que l’appareil est sur ON. Le circuit d’entrée et les circuits internes de l’appareil sont également sous tension à ce moment-là. En soudage semi-automatique ou automatique, le fil, le dévidoir, le logement des galets d’entraînement et les pièces métalliques en contact avec le fil de soudage sont sous tension. Des matériels mal installés ou mal mis à la terre présentent un danger.

- Ne jamais toucher les pièces électriques sous tension.
- Porter des gants et des vêtements de protection secs ne comportant pas de trous.
- S’isoler de la pièce et de la terre au moyen de tapis ou d’autres moyens isolants suffisamment grands pour empêcher le contact physique éventuel avec la pièce ou la terre.
- Ne pas se servir de source électrique à courant électrique dans les zones humides, dans les endroits confinés ou là où on risque de tomber.
- Se servir d’une source électrique à courant électrique UNIQUEMENT si le procédé de soudage le demande.
- Si l’utilisation d’une source électrique à courant électrique s’avère nécessaire, se servir de la fonction de télécommande s’il l’appareil en est équipé.
- Des précautions de sécurité supplémentaires sont requises dans des environnements à risque comme: les endroits humides ou lorsque l’on porte des vêtements mouillés; sur des structures métalliques au sol, grillages et échafaudages; dans des positions assises, à genoux et allongées; ou quand il y a un risque important de contact accidentel avec la pièce ou le sol. Dans ces cas utiliser les appareils suivants dans l’ordre de préférence: 1) un poste à souder DC semi–automatique de type CV (MIG/MAG), 2) un poste à souder manuel (électrode enrobée) DC, 3) un poste à souder manuel AC avec tension à vide réduite. Dans la plupart des cas, un poste courant continu de type CV est recommandé. Et, ne pas travailler seul!
 - Installer et mettre à la terre correctement cet appareil conformément à son manuel d’utilisation et aux codes nationaux, provinciaux et municipaux.
 - Toujours vérifier la terre du cordon d’alimentation – Vérifier et s’assurer que le fil de terre du cordon d’alimentation est bien raccordé à la borne de terre du sectionneur ou que la fiche du cordon est raccordée à une prise correctement mise à la terre.
 - En effectuant les raccordements d’entrée fixer d’abord le conducteur de mise à la terre approprié et contre-vérifier les connexions.
 - Les câbles doivent être exempts d’humidité, d’huile et de graisse; protégez–les contre les étincelles et les pièces métalliques chaudes.
 - Vérifier fréquemment le cordon d’alimentation pour voir s’il n’est pas endommagé ou dénudé – remplacer le cordon immédiatement s’il est endommagé – un câble dénudé peut provoquer une électrocution.
 - Mettre l’appareil hors tension quand on ne l’utilise pas.
 - Ne pas utiliser des câbles usés, endommagés, de grosseur insuffisante ou mal épissés.
 - Ne pas enrouler les câbles autour du corps.
 - Si la pièce soudée doit être mise à la terre, le faire directement avec un câble distinct – ne pas utiliser le connecteur de pièce ou le câble de retour.
 - Ne pas toucher l’électrode quand on est en contact avec la pièce, la terre ou une électrode provenant d’une autre machine.
 - Ne pas toucher des portes électrodes connectés à deux machines en même temps à cause de la présence d’une tension à vide double.
 - N’utiliser qu’un matériel en bon état. Réparer ou remplacer sur-le-champ les pièces endommagées. Entretien l’appareil conformément à ce manuel.
 - Porter un harnais de sécurité quand on travaille en hauteur.
 - Maintenir solide en place tous les panneaux et capots.
 - Fixer le câble de retour de façon à obtenir un bon contact métal-métal avec la pièce à souder ou la table de travail, le plus près possible de la soudure.
 - Isoler la pince de masse quand pas mis à la pièce pour éviter le contact avec tout objet métallique.
 - Il reste une TENSION DC NON NÉGLIGEABLE dans les sources de soudage ondulées UNE FOIS le moteur coupé.
- Couper l’alimentation du poste et décharger les condensateurs d’entrée comme indiqué dans la Section Maintenance avant de toucher des composants.
LES PIÈCES CHAUDES peuvent provoquer des brûlures.
- Ne pas toucher à mains nues les parties chaudes.
- Prévoir une période de refroidissement avant de travailler à l'équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

DES PIECES DE METAL ou DES SALETES peuvent provoquer des blessures dans les yeux.
- Le soudage, l'éclatement, le passage de la pièce à la brosse en fil de fer, et le meulage génèrent des étincelles et des particules métalliques volantes. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Porter des lunettes de sécurité avec écrans latéraux ou un écran facial.

LES FUMÉES ET LES GAZ peuvent être dangereux.
Le soudage génère des fumées et des gaz. L'inhalaion peut être dangereuse pour votre santé.
- Eloigner votre tête des fumées. Ne pas respirer les fumées.
- À l'intérieur, ventiler la zone et/ou utiliser une ventilation forcée au niveau de l'arc pour l'évacuation des fumées et des gaz de soudage.
- Si la ventilation est médiocre, porter un respirateur anti-vapeurs approuvé.
- Lire et comprendre les spécifications de sécurité des matériaux (MSDS) et les instructions du fabricant concernant les métaux, les consommables, les revêtements, les nettoyants et les dégraissateurs.
- Travailler dans un espace fermé seulement s'il est bien ventilé ou en présence d'un ventilateur d'adduction d'air. Demander toujours à un surveillant dûment formé de se tenir à proximité.
- Ne pas souder dans des endroits situés à proximité d'opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et le meulage génèrent des étincelles et des particules métalliques volantes. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Ne pas souder des métaux munis d'un revêtement, tels que l'acier galvanisé, plaqué en plomb ou au cadmium à moins qu'ils n'aient été préparés correctement conformément à AWS F4.1 (voir les normes de sécurité).
- Ne soudez pas si l'air ambiant est chargé de particules, gaz ou vapeurs inflammables (vapeur d'essence, par exemple).
- Ne pas souder dans des endroits situés à proximité d'opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et le meulage génèrent des étincelles et des particules métalliques volantes. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Ne pas souder des métaux munis d'un revêtement, tels que l'acier galvanisé, plaqué en plomb ou au cadmium à moins que le revêtement n'ait été enlevé dans la zone de soudure, que l'endroit soit bien ventilé, et en portant un respirateur à alimentation d'air. Les revêtements et tous les métaux renfermant ces éléments peuvent dégager des fumées toxiques et irritants.

LES ACCUMULATIONS DE GAZ risquent de provoquer des blessures ou même la mort.
- Fermer l'alimentation du gaz protecteur en cas de non utilisation.
- Veiller toujours à bien aérer les espaces confinés ou se servir d'un respirateur d'adduction d'air homologué.

LES RAYONS DE L'ARC peuvent provoquer des brûlures dans les yeux et sur la peau.
Le rayonnement de l'arc du procédé de soudage génère des rayons visibles et invisibles intenses (ultraviolets et infrarouges) susceptibles de provoquer des brûlures dans les yeux et sur la peau. Des étincelles sont projetées pendant le soudage.
- Porter un casque de soudage approuvé muni de verres filtrants approprié pour protéger visage et yeux pour protéger votre visage et vos yeux pendant le soudage ou pour regarder (voir ANSI Z49.1 et Z87.1 énuméré dans les normes de sécurité).
- Porter des lunettes de sécurité avec écrans latéraux même sous votre casque.
- Avoir recours à des écrans protecteurs ou à des rideaux pour protéger les autres contre les rayonnements les éblouissements et les étincelles ; prévenir toute personne sur les lieux de ne pas regarder l'arc.
- Porter des vêtements confectionnés avec des matières résistantes et ignifuges (cuir, coton lourd ou laine) et des bottes de protection.

LE SOUDAGE peut provoquer un incendie ou une explosion.
Le soudage effectué sur des conteneurs fermés tels que des réservoirs, tambours ou des conduites peut provoquer leur éclatement. Des étincelles peuvent être projetées de l'arc de soudure. La projection d'étincelles, des pièces chaudes et des équipements chauds peut provoquer des incendies et des brûlures. Le contact accidentel de l'électrode avec des objets métalliques peut provoquer des étincelles, une explosion, un surchauffement ou un incendie. Avant de commencer le soudage, vérifier et s'assurer que l'endroit ne présente pas de danger.
- Déplacer toutes les substances inflammables à une distance de 10,7 m de l'arc de soudage. En cas d'impossibilité les recouvrir soigneusement avec des protections homologuées.
- Ne pas souder dans un endroit là où des étincelles peuvent tomber sur des substances inflammables.
- Se protéger et d'autres personnes de la projection d'étincelles et de métal chaud.
- Des étincelles et des matériaux chauds du soudage peuvent facilement passer dans d'autres zones en traversant de petites fissures et des ouvertures.
- Surveiller tout déclenchement d'incendie et tenir un extincteur à proximité.
- Le soudage effectué sur un plafond, plancher, paroi ou séparation peut déclencher un incendie de l'autre côté.
- Ne pas effectuer le soudage sur des conteneurs fermés tels que des réservoirs, tambours, ou conduites, à moins qu'ils n'aient été préparés correctement conformément à AWS F4.1 (voir les normes de sécurité).
- Ne soudez pas si l'air ambiant est chargé de particules, gaz, ou vapeurs inflammables (vapeur d'essence, par exemple).
- Brancher le câble de masse sur la pièce le plus près possible de la zone de soudage pour éviter le transport du courant sur une longue distance par des chemins inconnus éventuels en provoquant des risques d'électrocution, d'étincelles et d'incendie.
- Ne pas utiliser le poste de soudage pour dégeler des conduites gelées.
- En cas de non utilisation, enlever la baguette d'électrode du porte-électrode ou couper le fil à la pointe de contact.
- Porter des vêtements de protection appropriés. Les vêtements et les étincelles risquent de projeter du laitier.
- Avant de soudier, retirer toute substance combustible de vos poches, de vos chaussures et de votre casque.
- Ne pas augmenter leur puissance ; ne pas les porter.
- Suivre les recommandations dans OSHA 1910.252(a)(2)(iv) et NFPA 51B pour les travaux à chaud et avoir de la surveillance et un extincteur à proximité.

LE BRUIT peut affecter l'ouïe.
Le bruit des processus et des équipements peut affecter l'ouïe.
- Porter des protections approuvées pour les oreilles si le niveau sonore est trop élevé.
Les CHAMPS ÉLECTROMAGNÉTIQUES (CEM) peuvent affecter les implants médicaux.

- Les porteurs de stimulateurs cardiaques et autres implants médicaux doivent rester à distance.
- Les porteurs d’implants médicaux doivent consulter leur médecin et le fabricant du dispositif avant de s’approcher de la zone où se déroule du soudage à l’arc, du soudage par points, du gougeage, de la découpe plasma ou une opération de chauffage par induction.

Si des BOUTEILLES sont endommagées, elles pourront exploser.

Des bouteilles de gaz protecteur contiennent du gaz sous haute pression. Si une bouteille est endommagée, elle peut exploser. Du fait que les bouteilles de gaz font normalement partie du procédé de soudage, les manipuler avec précaution.

- Protéger les bouteilles de gaz comprimé d’une chaleur excessive, des chocs mécaniques, des dommages physiques, du laitier, des flammes ouvertes, des étincelles et des arcs.

2-3. Dangers existant en relation avec le moteur

L’EXPLOSION DE LA BATTERIE peut provoquer des blessures.

- Toujours porter une protection faciale, des gants en caoutchouc et vêtements de protection lors d’une intervention sur la batterie.
- Arrêter le moteur avant de débrancher ou de brancher des câbles de batterie, des câbles de chargeur de batterie (le cas échéant) ou de batterie d’entretien.
- Éviter de provoquer des étincelles avec les outils en travaillant sur la batterie.
- Ne pas utiliser l’appareil de soudage pour charger des batteries ou la batterie.
- Observer la polarité correcte (+ et –) sur les batteries.
- Débrancher le câble négatif (–) en premier lieu. Le rebrancher en dernier lieu.
- Respecter les consignes du fabricant de la batterie pour travailler sur une batterie ou à proximité.

Le COURANT DE CHARGE DE BATTERIE peut provoquer des blessures (la fonctionnalité de charge de batterie n’est pas disponible sur tous les modèles).

- Les opérations de charge de batterie ne doivent être effectuées que par des personnes qualifiées.
- Ne charger que des batteries plomb–acide. Ne pas utiliser le chargeur de batterie pour alimenter un autre circuit électrique basse tension ou pour charger des batteries sèches.
- Ne pas charger une batterie gelée.
- Ne pas utiliser de câbles de charge endommagés.
- Ne pas charger une batterie dont les bornes sont desserrées ou présentant une détérioration comme par exemple un boîtier ou un couvercle fissuré.
- Avant de charger une batterie, sélectionner la tension de charge correspondant à la tension de la batterie.
- Régler les commandes de charge de batterie sur la position d’arrêt avant de brancher la batterie. Veiller à ce que les pinces de charge ne se touchent pas.
- Placer les bouteilles debout en les fixant dans un support stationnaire ou dans un porte-bouteilles pour les empêcher de tomber ou de se renverser.
- Tenir les bouteilles éloignées des circuits de soudage ou autres circuits électriques.
- Ne jamais placer une torche de soudage sur une bouteille à gaz.
- Une électrode de soudage ne doit jamais entrer en contact avec une bouteille.
- Ne jamais souder une bouteille pressurisée – risque d’explosion.
- Utiliser seulement des bouteilles de gaz protecteur, régulateurs, tuyaux et raccords convenables pour cette application spécifique; les maintenir ainsi que les éléments associés en bon état.
- Ne pas tenir la tête en face de la sortie en ouvrant la soupape de la bouteille.
- Maintenir le chapeau de protection sur la soupape, sauf en cas d’utilisation ou de branchement de la bouteille.
- Utiliser les équipements corrects, les bonnes procédures et suffisamment de personnes pour soulever et déplacer les bouteilles.
- Lire et suivre les instructions sur les bouteilles de gaz comprimé, l’équipement connexe et le dépliant P-1 de la CGA (Compressed Gas Association) mentionné dans les principales normes de sécurité.

LE CARBURANT MOTEUR peut provoquer un incendie ou une explosion.

- Arrêter le moteur avant de vérifier le niveau de carburant ou de faire le plein.
- Ne pas faire le plein en fumant ou proche d’une source d’étincelles ou d’une flamme nue.
- Ne pas faire le plein de carburant à ras bord; prévoir de l’espace pour son expansion.
- Faire attention de ne pas renverser de carburant. Nettoyer tout carburant renversé avant de faire démarrer le moteur.
- Jeter les chiffons dans un récipient ignifuge.
- Toujours garder le pistolet en contact avec le réservoir lors du remplissage.

Les PIÈCES MOBILES peuvent causer des blessures.

- S’abstenir de toucher des parties mobiles telles que des ventilateurs, courroies et rotors.
- Maintenir fermés et verrouillés les portes, panneaux, recouvrements et dispositifs de protection.
- Arrêter le moteur avant d’installer ou brancher l’appareil.
- Lorsque cela est nécessaire pour des travaux d’entretien et de dépannage, faire retirer les portes, panneaux, recouvrements ou dispositifs de protection uniquement par du personnel qualifié.
- Pour empêcher tout démarrage accidentel pendant les travaux d’entretien, débrancher le câble négatif (–) de batterie de la borne.
- Ne pas approcher les mains, cheveux, vêtements lâches et outils des organes mobiles.
- Remettre en place les portes, panneaux, recouvrements ou dispositifs de protection à la fin des travaux d’entretien et avant de mettre le moteur en marche.
- Avant d’intervenir, déposer les bougies ou injecteurs pour éviter la mise en route accidentelle du moteur.
- Bloquer le volant moteur pour éviter sa rotation lors d’une intervention sur le générateur.
LES ÉTINCELLES À L’ÉCHAPPEMENT peuvent provoquer un incendie.
- Empêcher les étinçelles d’échappement du moteur de provoquer un incendie.
- Utiliser uniquement un pare-étinçelles approuvé – voir codes en vigueur.

LES PIÈCES CHAUDES peuvent provoquer des brûlures.
- Ne pas toucher des parties chaudes à mains nues.
- Prévoir une période de refroidissement avant de travailler à l’équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT CHAUD peuvent provoquer des brûlures.
- Il est préférable de vérifier le liquide de refroidissement une fois le moteur refroidi pour éviter de se brûler.
- Toujours vérifier le niveau de liquide de refroidissement dans le vase d’expansion (si présent), et non dans le radiateur (sauf si précisé autrement dans la section maintenance du manuel du moteur).
- Si le moteur est chaud et que le liquide doit être vérifié, opérer comme suivant.

2-4. Dangers liés à l’hydraulique

Les ÉQUIPEMENTS HYDRAULIQUES peuvent provoquer des blessures ou même la mort.
- Une installation ou une utilisation incorrecte de cet appareil pourrait conduire à des dégâts matériels ou corporels. Seul un personnel qualifié est autorisé à installer, faire fonctionner et réparer cet appareil conformément à son manuel d’utilisation, aux normes industrielles et aux codes nationaux, d’état ou locaux.
- Ne pas dépasser le débit nominal ou la capacité de la pompe hydraulique ou de tout équipement du circuit hydraulique. Concevoir le circuit hydraulique de telle sorte que la défaillance d’un composant hydraulique ne risque pas de provoquer un accident matériel ou corporel.
- Avant d’intervenir sur le circuit hydraulique, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détenir la pression et s’assurer que le circuit hydraulique ne peut être remis sous pression par inadvertance.
- Ne pas intervenir sur le circuit hydraulique lorsque l’appareil fonctionne. Seul un personnel qualifié et appliquant les consignes du fabricant est autorisé le faire.
- Ne pas modifier ou altérer la pompe hydraulique ou les équipements fournis par le fabricant. Ne pas débrancher, désactiver ou neutraliser les équipements de sécurité du circuit hydraulique.
- Utiliser uniquement des composants et accessoires homologués par le fabricant.
- Se tenir à l’écart de tout point présentant un danger de pincement ou d’écrasement créé par l’équipement raccordé au circuit hydraulique.

Le LIQUIDE HYDRAULIQUE risque de provoquer des blessures ou même la mort.
- Avant d’intervenir sur le circuit hydraulique, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détenir la pression et s’assurer que le circuit hydraulique ne peut être remis sous pression par inadvertance.
- Détendre la pression avant de débrancher ou de brancher des canalisations hydrauliques.
- Avant d’utiliser l’appareil, contrôler les composants du circuit hydraulique, les branchements et les flexibles en recherchant tout signe de détérioration, de fuite et d’usure.
- Pour intervenir sur un circuit hydraulique, porter un équipement de protection tel que des lunettes de sécurité, gants de cuir, une chemise et un pantalon en tissu résistant, des chaussures montantes et une coiffe.
- Pour rechercher des fuites, utiliser un morceau de papier ou de carton, jamais les mains nues. En cas de détection de fuite, ne pas utiliser l’équipement.
- Le LIQUIDE HYDRAULIQUE est INFLAMMABLE. Ne pas intervenir sur des composants hydrauliques à proximité d’étincelles ou de flammes; ne pas fumer à proximité de liquide hydraulique.
- Remettre les ports, panneaux, recouvrements ou dispositifs de protection quand l’entretien est terminé et avant de mettre en marche l’appareil.
- En cas de pénétration d’un QUELCONQUE liquide dans la peau, celui-ci doit être retiré chirurgicalement sous quelques heures par...
un médecin familiarisé avec ce type de blessure, faute de quoi la gangrène pourrait apparaître.

Les PIÈCES MOBILES peuvent causer des blessures.

- S’abstenir de toucher des parties mobiles telles que des ventilateurs, courroies et rotors.
- Maintenir fermés et verrouillés les portes, panneaux, recouvrements et dispositifs de protection.
- Ne pas approcher les mains, cheveux, vêtements lâches et outils des organes mobiles.
- Avant d'intervenir sur le circuit hydraulique, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détendre la pression et s’assurer que le circuit hydraulique ne peut être remis sous pression par inadvertance.
- Demander seulement à un personnel qualifié d’enlever les dispositifs de sécurité ou les recouvrements pour effectuer, s’il y a lieu, des travaux d’entretien et de dépannage.
- Remettre en place les portes, panneaux, recouvrements ou dispositifs de protection à la fin des travaux d’entretien et avant de mettre le moteur en marche.

2-5. Dangers liés à l’air comprimé

Un ÉQUIPEMENT PNEUMATIQUE risque de provoquer des blessures ou même la mort.

- Une installation ou une utilisation incorrecte de cet appareil pourrait conduire à des dégâts matériels ou corporels. Seul un personnel qualifié est autorisé à installer, utiliser et entretenir cet appareil conformément à son manuel d’utilisation, aux normes industrielles et aux codes nationaux, d’état ou locaux.
- Ne pas dépasser le débit nominal ou la capacité du compresseur ou de tout équipement du circuit d’air comprimé. Concevoir le circuit d’air comprimé de telle sorte que la défaillance d’un composant ne risque pas de provoquer un accident matériel ou corporel.
- Avant d’intervenir sur le circuit d’air comprimé, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détendre la pression et s’assurer que le circuit d’air ne peut être mis sous pression par inadvertance.
- Ne pas intervenir sur le circuit d’air comprimé lorsque l’appareil fonctionne. Seul un personnel qualifié est autorisé, et appliquant les consignes du fabricant.
- Ne pas modifier ou altérer le compresseur ou les équipements fournis par le fabricant. Ne pas débrancher, désactiver ou neutraliser les équipements de sécurité du circuit d’air comprimé.
- Utiliser uniquement des composants et accessoires homologués par le fabricant.
- Se tenir à l’écart de tout point présentant un danger de pincement ou d’écrasement créé par l’équipement raccordé au circuit d’air comprimé.
- Ne pas intervenir sous ou autour d’un équipement qui n’est soutenu que par la pression pneumatique. Soutenir l’équipement de façon appropriée par un moyen mécanique.

MÉTAL CHAUD provenant du découpage ou du gougeage à l’arc risque de provoquer un incendie ou une explosion.

- Ne pas découper ou gouger à proximité de produits inflammables.
- Attention aux risques d’incendie: tenir un extincteur à proximité.

LES PIÈCES ET LIQUIDES CHAUDS

- Ne pas toucher les pièces chaudes à main nue ni laisser des liquides chauds entrer en contact avec la peau.
- Prévoir une période de refroidissement avant d’intervenir sur l’équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

L’AIR COMPRIÉ risque de provoquer des blessures ou même la mort.

- Avant d’intervenir sur le circuit d’air comprimé, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détendre la pression et s’assurer que le circuit d’air ne peut être mis sous pression par inadvertance.
- Détendre la pression avant de débrancher ou de brancher des canalisations d’air.
- Avant d’utiliser l’appareil, contrôler les composants du circuit d’air comprimé, les branchements et les flexibles en recherchant tout signe de détérioration, de fuite et d’usure.
- Ne pas diriger un jet d’air vers soi-même ou vers autrui.
- Pour intervenir sur un circuit d’air comprimé, porter un équipement de protection tel que des lunettes de sécurité, des gants de cuir, une chemise et un pantalon en tissu résistant, des chaussures étanches et une coiffe.
- Pour rechercher des fuites, utiliser de l’eau savonneuse ou un détecteur à ultrasons, jamais les mains nues. En cas de détection de fuite, ne pas utiliser l’équipement.
- Remettre les portes, panneaux, recouvrements ou dispositifs de protection quand l’entretien est terminé et avant de mettre en marche l’appareil.
- En cas d’injection d’air dans la peau ou le corps, demander immédiatement une assistance médicale.

L’INHALATION D’AIR COMPRIÉ risque de provoquer des blessures ou même la mort.

- Ne pas inhaler d’air comprimé.
- Utiliser l’air comprimé uniquement pour découper ou gouger ainsi que pour l’outillage pneumatique.
2-6. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance

Les PIÈCES MOBILES peuvent causer des blessures.
- S’abstenir de toucher des parties mobiles telles que des ventilateurs, courroies et rotors.
- Maintenir fermés et verrouillés les portes, panneaux, recouvrements et dispositifs de protection.
- Ne pas approcher les mains, cheveux, vêtements lâches et outils des organes mobiles.
- Avant d’intervenir sur le circuit d’air comprimé, couper l’alimentation électrique, verrouiller et étiqueter l’appareil, détenir la pression et s’assurer que le circuit d’air ne peut être mis sous pression par inadvertance.
- Demander seulement à un personnel qualifié d’enlever les dispositifs de sécurité ou les recouvrements pour effectuer, s’il y a lieu, des travaux d’entretien et de dépannage.

Risque D’INCENDIE OU D’EXPLOSION.
- Ne pas placer l’appareil sur, au-dessus ou à proximité de surfaces inflammables.
- Ne pas installer l’appareil à proximité de produits inflammables.
- Ne pas surcharger l’installation électrique – s’assurer que l’alimentation est correctement dimensionnée et protégée avant de mettre l’appareil en service.

LA CHUTE DE L’ÉQUIPEMENT peut provoquer des blessures.
- Utiliser l’anneau de levage pour lever l’appareil et les accessoires correctement installées seuls, PAS les bouteilles de gaz. Ne pas dépasser le poids nominal maximal de l’œilleton (voir les spécifications).
- Utiliser un équipement de levage de capacité suffisante pour lever l’appareil.
- En utilisant des fourches de levage pour déplacer l’unité, s’assurer que les fourches sont suffisamment longues pour dépasser du côté opposé de l’appareil.
- Tenir l’équipement (câbles et cordons) à distance des véhicules mobiles lors de toute opération en hauteur.
- Suivre les consignes du Manuel des applications pour l’équation de levage NIOSH révisée (Publication Nº94–110) lors du levage manuel de pièces ou équipements lourds.

LE SURCHAUFFEMENT peut endommager le moteur électrique.
- Arrêter ou déconnecter l’équipement avant de démarrer ou d’arrêter le moteur.
- Ne pas laisser tourner le moteur trop lentement sous risque d’endommager le moteur électrique à cause d’une tension et d’une fréquence trop faibles.
- Ne pas brancher de moteur de 50 ou de 60 Hz à la prise de 100 Hz, s’il y a lieu.

Remettre en place les portes, panneaux, recouvrements ou dispositifs de protection à la fin des travaux d’entretien et avant de mettre le moteur en marche.

DES PIÈCES CHAUDES peuvent provoquer des brûlures graves.
- Ne pas toucher de pièces chaudes du compresseur ou du circuit d’air.
- Prévoir une période de refroidissement avant d’intervenir sur l’équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

LIRE LES INSTRUCTIONS.
- N’utiliser que les pièces de rechange recommandées par le constructeur.
- Effectuer l’entretien en respectant les manuels d’utilisation, les normes industrielles et les codes nationaux, d’état et locaux.

LES ÉTINCELLES PROJETÉES peuvent provoquer des blessures.
- Porter un écran facial pour protéger le visage et les yeux.
- Affûter l’électrode au tungstène uniquement à la meilleure dotée de protecteurs. Cette manoeuvre est à exécuter dans un endroit sûr lors qu’on porte l’équipement homologué de protection du visage, des mains et du corps.
- Les étincelles risquent de causer un incendie – éloigner toute substance inflammable.

Les PIÈCES MOBILES peuvent causer des blessures.
- Ne pas s’approcher des organes mobiles.
- Ne pas s’approcher des points de coincement tels que des rouleaux de commande.

LES FILS DE SOUDAGE peuvent provoquer des blessures.
- Ne pas appuyer sur la gâchette avant d’en avoir reçu l’instruction.
- Ne pas diriger le pistolet vers soi, d’autres personnes ou toute pièce mécanique en engageant le fil de soudage.

L’EMPLOI EXCESSIF peut SURCHAUFFER L’ÉQUIPEMENT.
- Laisser l’équipement refroidir ; respecter le facteur de marche nominal.
- Réduire le courant ou le facteur de marche avant de poursuivre le soudage.
- Ne pas obstruer les passages d’air du poste.
LES CHARGES ÉLECTROSTATIQUES peuvent endommager les circuits imprimés.

- Établir la connexion avec la barrette de terre avant de manipuler des cartes ou des pièces.
- Utiliser des pochettes et des boîtes antistatiques pour stocker, déplacer ou expédier des cartes de circuits imprimés.

UNE REMORQUE QUI BASCULE peut provoquer des blessures.

- Utiliser les supports de la remorque ou des blocs pour soutenir le poids.
- Installer convenablement le poste sur la remorque comme indiqué dans le manuel s’y rapportant.

LIRE LES INSTRUCTIONS.

- N’utiliser que les pièces de rechange recommandées par le constructeur.
- Effectuer l’entretien en respectant les manuels d’utilisation, les normes industrielles et les codes nationaux, d’état et locaux.

LE RAYONNEMENT HAUTE FRÉQUENCE (H.F.) risque de provoquer des interférences.

- Le rayonnement haute fréquence (H.F.) peut provoquer des interférences avec les équipements électroniques de radio-navigation et de communication, les services de sécurité et les ordinateurs.

LE SOUDAGE À L’ARC risque de provoquer des interférences.

- L’énergie électromagnétique risque de provoquer des interférences pour l’équipement électronique sensible tels que les ordinateurs et l’équipement commandé par ordinateur, tel que les robots.
- Veiller à ce que tout l’équipement de la zone de soudage soit compatible électromagnétiquement.
- Pour réduire la possibilité d’interférence, maintenir les câbles de soudage aussi courts que possible, les grouper, et les poser aussi bas que possible (ex. par terre).
- Veiller à souder à une distance de 100 mètres de tout équipement électronique sensible.
- Veiller à ce que ce poste de soudage soit posé et mis à la terre conformément à ce mode d’emploi.
- En cas d’interférences après avoir pris les mesures précédentes, il incombe à l’utilisateur de prendre des mesures supplémentaires telles que le déplacement du poste, l’utilisation de câbles blindés, l’utilisation de filtres de ligne ou la pose de protecteurs dans la zone de travail.

2-7. Proposition californienne 65 Avertissements

Les équipements de soudage et de coupage produisent des fumées et des gaz qui contiennent des produits chimiques dont l’État de Californie reconnaît qu’ils provoquent des malformations congénitales et, dans certains cas, des cancers. (Code de santé et de sécurité de Californie, chapitre 25249.5 et suivants)

Les batteries, les bornes et autres accessoires contiennent du plomb et des composés à base de plomb, produits chimiques dont l’État de Californie reconnaît qu’ils provoquent des cancers et des malformations congénitales ou autres problèmes de procréation. Se laver les mains après manipulation.

Ce produit contient des produits chimiques, compris du plomb, dont l’État de Californie reconnaît qu’ils provoquent des cancers et des malformations congénitales ou autres problèmes de procréation. Se laver les mains après manipulation.

Pour les moteurs à essence :

Les gaz d’échappement des moteurs contiennent des produits chimiques dont l’État de Californie reconnaît qu’ils provoquent des cancers et des malformations congénitales ou autres problèmes de procréation.

Pour les moteurs diesel :

Les gaz d’échappement des moteurs diesel et certains de leurs composants sont reconnus par l’État de Californie comme provoquant des cancers et des malformations congénitales ou autres problèmes de procréation.
2-8. Principales normes de sécurité

Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P-1, from Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly, VA 20151 (phone: 703-788-2700, website:www.cganet.com).

For Standards about hydraulic systems, contact the National Fluid Power Association, Publications Department, 3333 North Mayfair Road, Suite 211, Milwaukee, WI 53222-3219 (phone: (414) 778-3344, website: www.nfpa.com).

2-9. Informations relatives aux CEM

Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits. Le courant de soudage crée un CEM autour du circuit et du matériel de soudage. Les CEM peuvent créer des interférences avec certains implants médicaux comme des stimulateurs cardiaques. Des mesures de protection pour les porteurs d’implants médicaux doivent être prises: par exemple, des restrictions d’accès pour les passants ou une évaluation individuelle des risques pour les soudeurs. Tous les soudeurs doivent appliquer les procédures suivantes pour minimiser l’exposition aux CEM provenant du circuit de soudage:

1. Rassembler les câbles en les torsadant ou en les attachant avec du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d’un côté et à distance de l’opérateur.
3. Ne pas courber et ne pas entourer les câbles autour de votre corps.
4. Maintenir la tête et le torse aussi loin que possible du matériel du circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la soudure.
6. Ne pas travailler à proximité d’une source de soudage, ni s’asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le dévidoir.

En ce qui concerne les implants médicaux :

Les porteurs d’implants doivent d’abord consulter leur médecin avant de s’approcher des opérations de soudage à l’arc, de soudage par points, de gougeage, du coupage plasma ou de chauffage par induction. Si le médecin approuve, il est recommandé de suivre les procédures précédentes.
SECTION 3 – DEFINITIONS

3-1. Symbol Definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stop Engine</td>
</tr>
<tr>
<td></td>
<td>Fast (Run, Weld/Power)</td>
</tr>
<tr>
<td></td>
<td>Fast/Slow (Run/Idle)</td>
</tr>
<tr>
<td></td>
<td>Slow (Idle)</td>
</tr>
<tr>
<td></td>
<td>Start Engine</td>
</tr>
<tr>
<td></td>
<td>Read Operator's Manual</td>
</tr>
<tr>
<td></td>
<td>Amperes</td>
</tr>
<tr>
<td></td>
<td>Volts</td>
</tr>
<tr>
<td></td>
<td>Engine Oil</td>
</tr>
<tr>
<td></td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>Battery (Engine)</td>
</tr>
<tr>
<td></td>
<td>Engine</td>
</tr>
<tr>
<td></td>
<td>Engine Choke</td>
</tr>
<tr>
<td></td>
<td>Check Valve Clearance</td>
</tr>
<tr>
<td></td>
<td>Do not switch while welding</td>
</tr>
<tr>
<td></td>
<td>Work Connection</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Alternating Current (AC)</td>
</tr>
<tr>
<td></td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>Welding Arc (Electrode)</td>
</tr>
<tr>
<td></td>
<td>MIG (GMAW), Wire</td>
</tr>
<tr>
<td></td>
<td>Stick (SMAW)</td>
</tr>
<tr>
<td></td>
<td>TIG (GTAW)</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td></td>
<td>Seconds</td>
</tr>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Circuit Protector</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Protective Earth (Ground)</td>
</tr>
</tbody>
</table>
SECTION 4 – SPECIFICATIONS

This unit uses either a Subaru EH-65, Kohler CH-23, or Kohler ECH-730 engine. Differences between models are noted throughout this manual.

4-1. Weld, Power, and Carbureted Engine Specifications (Subaru EH-65, Kohler CH-23)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CC/AC</td>
<td>40 – 250 A</td>
<td>250 A, 25 V, 100% Duty Cycle</td>
<td>80</td>
<td>Peak: 11.0 kVA/kW</td>
<td>12 gal</td>
<td>Subaru EH-65 Air-Cooled, Two-Cylinder, Four-Cycle, 23 HP Gasoline Engine</td>
</tr>
<tr>
<td>CC/DC</td>
<td>40 – 250 A</td>
<td>250 A, 25 V, 100% Duty Cycle</td>
<td>80</td>
<td>Peak: 9.5 kVA/kW Single-Phase 80/40 A, 120/240 VAC, 60 Hz (while not welding)</td>
<td>12 gal</td>
<td>Kohler CH-23 Air-Cooled, Two-Cylinder, Four-Cycle, 23 HP Gasoline Engine</td>
</tr>
</tbody>
</table>

4-2. Weld, Power, And EFI Engine Specifications (Kohler ECH-730)

|---------------|-------------------|----------------------|------------------------------|------------------------|--------------|--------|
4-3. Dimensions, Weights, And Operating Angles

- **Do not exceed tilt angles or engine could be damaged or unit could tip.**
- **Do not move or operate unit where it could tip.**

Weight: 562 lb (254 kg)

Lifting Eye Weight Rating: 1280 lb (580 kg)

Dimensions:
- **Width:** 20" (50.8 cm)
- **Height:** 20" (50.8 cm)
- **Depth:** 20" (50.8 cm)

Weight: 562 lb (254 kg)

Lifting Eye Weight Rating: 1280 lb (580 kg)

Support Assembly Dimensions
- **Minimum Gage:** 12
- **Minimum Width:** 3" (7.6 cm)

Location:
- **Front Cross Support:**
- **Rear Cross Support:**

Note:
- Heights and widths are approximate based on the mounting holes' dimensions.
4-4. Dimensions For Units With Optional Running Gear

<table>
<thead>
<tr>
<th>Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>All Running Gear Options: 42-1/2 in (1079 mm) (To Top Of Handle Assembly)</td>
</tr>
<tr>
<td>A</td>
<td>Protective Cage Width: 26 in (660 mm)</td>
</tr>
<tr>
<td>B</td>
<td>Running Gear Width: 32 in (813 mm)</td>
</tr>
<tr>
<td>C</td>
<td>Protective Cage Length: 48 in (1219 mm)</td>
</tr>
<tr>
<td>D</td>
<td>Running Gear Length: 45–1/2 in (1156 mm)</td>
</tr>
</tbody>
</table>

4-5. Duty Cycle

Duty cycle is the percentage of 10 minutes that unit can weld at rated load without overheating.

NOTICE – Exceeding duty cycle can damage unit and void warranty.

Continuous Welding

100% Duty Cycle at 250 Amperes
4-6. Fuel Consumption (Subaru-Powered Units)

On a typical job using 1/8 in 7018 electrodes (125 amps, 20% duty cycle), expect about 20 hours of operation.

Welding at 150 amps at 40% duty cycle uses approximately 3/4 gallon per hour, or about 16 hours of operation.

4-7. Fuel Consumption (Kohler-Powered Units)

On a typical job using 1/8 in. 7018 electrodes (125 amps, 20% duty cycle), expect about 20 hours of operation (22 hours with EFI engine).

Welding at 150 amps at 40% duty cycle uses approximately 3/4 gallon per hour. Expect about 16 hours of operation with carbureted engine (18 hours with EFI engine).
The volt-ampere curve shows the minimum and maximum voltage and amperage output capabilities of the welding generator. Curves of all other settings fall between the curves shown.

Ranges

A = 100–250
B = 80–200
C = 60–140
D = 40–100
4-9. Generator Power Curve

The generator power curve shows the generator power in amperes available at the receptacles.

Notes

Work like a Pro!
Pros weld and cut safely. Read the safety rules at the beginning of this manual.
5-1. Serial Number And Rating Label Location

The serial number and rating information for this product is located on the back. Use rating label to determine input power requirements and/or rated output. For future reference, write serial number in space provided on back cover of this manual.

5-2. Installing Welding Generator

Movement

- Do not move or operate unit where it could tip.
- Do not lift unit from end.
- Do not weld on base. Welding on base can cause fuel tank fire or explosion. Bolt unit down using holes provided in base.
- Always securely fasten welding generator onto transport vehicle or trailer and comply with all DOT and other applicable codes.

Location / Airflow Clearance

- **NOTICE** – Do not install unit where airflow is restricted or engine may overheat.
- See Section 4-3 for lifting eye rating.

Mounting

- **NOTICE** – For models with EFI engine, unplug harness from ECU if welding on unit

1 Cross-Supports

Mount unit on flat surface or use cross-supports to support base (see Section 4-3).
5-3. Grounding Generator To Truck Or Trailer Frame

Always ground generator frame to vehicle frame to prevent electric shock and static electricity hazards.

Also see AWS Safety & Health Fact Sheet No. 29, Grounding of Portable And Vehicle Mounted Welding Generators.

Bed liners, shipping skids, and some running gear insulate the welding generator from the vehicle frame. Always connect a ground wire from the generator equipment grounding terminal to bare metal on the vehicle frame as shown.

If unit does not have GFCI receptacles, use GFCI-protected extension cord.

1. Equipment Grounding Terminal (On Front Panel)
2. Grounding Cable (Not Supplied)
3. Metal Vehicle Frame

Connect cable from equipment ground terminal to metal vehicle frame. Use #8 AWG or larger insulated copper wire.

Electrically bond generator frame to vehicle frame by metal-to-metal contact.

5-4. Installing Exhaust Pipe

Stop engine and let cool.

Engine backfire can cause severe burns or other injuries. Do not point exhaust pipe toward control panel. Keep away from exhaust outlet.

Do not point exhaust pipe toward LP fuel tank (if equipped). Do not point exhaust pipe towards shielding gas tank (if equipped).

Point exhaust pipe in desired direction but always away from front panel and direction of travel.

Tools Needed:

1/2 in.
5-5. Connecting Or Replacing The Battery

Tools Needed:

1/2 in.

Connect negative (−) battery cable last

To connect battery, open right side engine access door.

1 Battery Holddown

To change battery, remove rear panel with baffle and battery holddown.

Be sure battery cables are not pinched when installing battery.

5-6. Electronic Fuel Injection (EFI) System And Battery Information

NOTICE – EFI system components can be damaged if these precautions are not followed:

- Do not allow the battery cables to touch opposing terminals. When connecting the battery cables attach the positive (+) cable to the positive (+) battery terminal first, followed by negative (−) cable to negative (−) battery terminal.
- Never start the engine when the cables are loose or poorly connected to the battery terminals.
- Never disconnect the battery while the engine is running.
- Never use a quick battery charger to start the engine.
- Do not charge battery with Engine Control switch On.
- Always disconnect the negative (−) battery cable before charging battery.
5-7. Engine Prestart Checks (Subaru-Powered Units)

Check all fluids daily. Engine must be cold and on a level surface. Unit is shipped with 10W30 engine oil.

Follow run-in procedure in engine manual.

NOTICE – This unit has a low oil pressure shutdown switch. However, some conditions may cause engine damage before the engine shuts down. Check oil level often and do not use the oil pressure shutdown system to monitor oil level.

Open top service door.

Fuel

Fill tank with fresh fuel (see maintenance label for specifications). Stop fueling when fuel level reaches neck tube. Do not top off tank. Always leave filler neck empty to allow room for expansion. Check fuel level on a cold engine before use each day.

Oil

Do not exceed the "Full" mark on the oil level dipstick. The fuel pump may operate erratically if crankcase is overfilled.

After fueling, check oil with unit on level surface. If oil is not up to full mark on dipstick, add oil (see maintenance label).

To improve cold weather starting:

Keep battery in good condition.
Store battery in warm area.

Use correct grade oil for cold weather.

Close top service door.
5-8. Engine Prestart Checks (Kohler-Powered Units)

Check all fluids daily. Engine must be cold and on a level surface. Unit is shipped with 10W30 engine oil.

Follow run-in procedure in engine manual.

NOTICE – This unit has a low oil pressure shutdown switch. However, some conditions may cause engine damage before the engine shuts down. Check oil level often and do not use the oil pressure shutdown system to monitor oil level.

Open top service door.

Fuel
Fill tank with fresh fuel (see maintenance label for specifications). Stop fueling when fuel level reaches neck tube. Do not top off tank. Always leave filler neck empty to allow room for expansion. Check fuel level on a cold engine before use each day.

Oil
Do not exceed the “Full” mark on the oil level dipstick. The fuel pump may operate erratically if crankcase is overfilled.

After fueling, check oil with unit on level surface. If oil is not up to full mark on dipstick, add oil (see maintenance label).

To improve cold weather starting:

Keep battery in good condition.

Store battery in warm area.

Use correct grade oil for cold weather.

Close top service door.
5-9. Weld Output Terminals

Stop engine.
1 Work Weld Output Terminal
2 Electrode Weld Output Terminal
Connect work cable to Work terminal.
Connect electrode holder cable or electrode weld cable to Electrode terminal for Stick and MIG welding.
Connect torch cable to Electrode terminal for TIG welding.
Use Process Selector switch to select type of weld output (see Section 6-1).
See Sections 6-4 thru 6-6 for typical process connections and control settings.

5-10. Connecting To Weld Output Terminals

Stop engine.
Failure to properly connect weld cables may cause excessive heat and start a fire, or damage your machine.
Do not place anything between weld cable terminal and copper bar. Make sure that the surfaces of the weld cable terminal and copper bar are clean.
1 Correct Weld Cable Connection
2 Incorrect Weld Cable Connection
3 Weld Output Terminal
4 Supplied Weld Output Terminal Nut
5 Weld Cable Terminal
6 Copper Bar

Remove supplied nut from weld output terminal. Slide weld cable terminal onto weld output terminal and secure with nut so that weld cable terminal is tight against copper bar.

Tools Needed:
3/4 in.
5-11. Selecting Weld Cable Sizes*

NOTICE – The Total Cable Length in Weld Circuit (see table below) is the combined length of both weld cables. For example, if the power source is 100 ft (30 m) from the workpiece, the total cable length in the weld circuit is 200 ft (2 cables x 100 ft). Use the 200 ft (60 m) column to determine cable size.

<table>
<thead>
<tr>
<th>Welding Amperes</th>
<th>Weld Cable Size** and Total Cable (Copper) Length in Weld Circuit Not Exceeding***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 ft (30 m) or Less</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>100</td>
<td>4 (20)</td>
</tr>
<tr>
<td>150</td>
<td>3 (30)</td>
</tr>
<tr>
<td>200</td>
<td>3 (30)</td>
</tr>
<tr>
<td>250</td>
<td>2 (35)</td>
</tr>
<tr>
<td>300</td>
<td>1 (50)</td>
</tr>
<tr>
<td>350</td>
<td>1/0 (60)</td>
</tr>
<tr>
<td>400</td>
<td>1/0 (60)</td>
</tr>
<tr>
<td>500</td>
<td>2/0 (70)</td>
</tr>
</tbody>
</table>

* This chart is a general guideline and may not suit all applications. If cable overheats, use next size larger cable.

**Weld cable size (AWG) is based on either a 4 volts or less drop or a current density of at least 300 circular mils per ampere.

() = mm² for metric use

***For distances longer than those shown in this guide, call a factory applications rep. at 920-735-4505 (Miller) or 1-800-332-3281 (Hobart)

Ref. S-0007-G 2009-08

Notes

Work like a Pro!
Pros weld and cut safely. Read the safety rules at the beginning of this manual.
SECTION 6 – OPERATING THE WELDING GENERATOR

6-1. Front Panel Controls (See Section 6-2)

METER MAINTENANCE FUNCTIONS

- **HOUR METER**: with engine off, place Engine Control switch in RUN/IDLE position to view engine hours.
- **OIL CHANGE INTERVAL**: with engine off, place Engine Control switch into the RUN position to see hours before next oil change. Oil hours start at 100 (wrench icon ♂ displays) and count down to 0 (wrench icon ♂ flashes and oil change is due). **NOTE**: Negative hours indicated when past recommended oil change interval. **TO RESET**: Cycle Engine Control switch from the RUN/IDLE to RUN position 3 times within 5 seconds (engine Off).
6-2. Description Of Controls (See Section 6-1)

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engine Control Switch</td>
</tr>
<tr>
<td>Use switch to start engine, select speed, and stop engine. In Run/Idle position, engine runs at idle speed at no load, and weld/power speed under load. In Run position, engine runs at weld/power speed. Place switch in Run position to operate most MIG equipment.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Engine Choke Control (Carbureted Engine Only)</td>
</tr>
<tr>
<td>Use control to change engine air-fuel mix. To Start: pull out choke (if equipped) and turn Engine Control switch to Start position. Release switch when engine starts. Slowly push in choke (if equipped) If the engine does not start, let engine come to a complete stop before attempting restart. During cold weather some gasoline engines encounter difficulties that are easily remedied. See Section 6-3 and 9-3.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Engine Hour Meter/Fuel Gauge/Idle Control</td>
</tr>
<tr>
<td>Low fuel is indicated by an orange flashing light on the right side of the display. A maintenance interval is reached when the wrench icon appears in the display. Hour Meter: With engine off, place Engine Control switch in Run/Idle position to view engine hours. Oil Change Interval: With engine off, place Engine Control switch in the Run position to see hours before next oil change. Oil hours start at 100 and count down to 0 (zero) (oil change due). Negative hours indicated when past recommended oil change interval. To reset, cycle Engine Control switch from Run/Idle to Run three times within five seconds (engine off).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Weld Process Selector Switch</td>
</tr>
<tr>
<td>NOTICE – Do not switch under load. Use switch to select type of weld output. Wire (GMAW) Welding: Use a positive (+) position for Direct Current Electrode Positive (DCEP) and a negative (−) position for Direct Current Electrode Negative. Use AC position for alternating current. Stick (SMAW) and TIG (GTAW Welding): Use a positive (+) position for Direct Current Electrode Positive (DCEP) and a negative (−) position for Direct Current Electrode Negative. Oil Change Interval: With engine off, place Engine Control switch in the Run position to see hours before next oil change. Oil hours start at 100 and count down to 0 (zero) (oil change due). Negative hours indicated when past recommended oil change interval. To reset, cycle Engine Control switch from Run/Idle to Run three times within five seconds (engine off).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coarse Range Switch NOTICE – Do not switch under load. Use switch to select type of weld output. Wire (GMAW) Welding: Use a positive (+) position for Direct Current Electrode Positive (DCEP) and a negative (−) position for Direct Current Electrode Negative. Use AC position for alternating current. Oil Change Interval: With engine off, place Engine Control switch in the Run position to see hours before next oil change. Oil hours start at 100 and count down to 0 (zero) (oil change due). Negative hours indicated when past recommended oil change interval. To reset, cycle Engine Control switch from Run/Idle to Run three times within five seconds (engine off).</td>
</tr>
<tr>
<td>6</td>
<td>Fine Control</td>
</tr>
<tr>
<td>Use control to select weld amperage (Stick/Tig) or voltage (Wire) within the range selected by the Coarse Range switch. Control may be adjusted while welding. Set control at 10 for maximum generator power. Weld output would be about 124 A DC based on control settings shown (80% of 60 to 140 A). Settings shown are typical for welding with a 7018 (1/8") electrode. See Sections 6-4 thru 6-6 for typical process connections and control settings.</td>
<td></td>
</tr>
</tbody>
</table>

6-3. Cold Weather Engine Operation

Carburetor Icing

Carburetor icing causes the unit to drop below the normal idle speed and then stall. This condition occurs when the temperature is near freezing and the relative humidity is high. Ice forms on the throttle plate and inner bore of the carburetor. The engine typically restarts without problems but soon stalls again.

- Treat gasoline with a fuel de-icer product (isopropyl alcohol).
- Place the Engine Control switch in the Run position.
- Run engine only when expecting to frequently load it.

Breather Icing

Oil breather/pulse line icing occurs in severe cold (continuously below 0°F). Moisture accumulates in the oil from piston ring blow-by if the engine is extensively idled. This may cause vacuum line freezing, oil breather tube freezing or ice in the carburetor. All of these cause operating problems. Due to ice in the lines, the engine may not restart until it is warmed to above freezing.

- Load engine and reduce idle times to prevent engine shutdowns.
- Use an electric fuel pump to avoid pulse line freezing.
- Install engine cold-weather kit.

Both Kohler (1-800-544-2444) and Subaru (1-800-277-6246) offer kits for cold weather operation. The user can install these kits. Both kits pull heated air from the muffler surface into the carburetor and shut the cold air off. This increases engine temperature during operation in both idle and high speed.

When the ambient temperatures become warmer (above 45° F) the air flow will have to be returned to normal.
6-4. Typical Stick Welding Connections And Control Settings

Stop engine.
- This section provides general guidelines and may not suit all applications.
- The control panel shows the typical settings for welding with a 7018 (1/8 in) electrode. Consult the amperage selection tables below if welding with other electrodes.

1. Work Clamp
2. Electrode Holder
 - Connect work cable to work terminal and electrode holder cable to electrode terminal on welding generator.

Be sure to use the correct size weld cables (see Section 5-11).

For best performance, set the Coarse Range switch to the lowest range that covers the desired weld amperage. Use the Fine control to select the desired amperage within the range selected. When properly set, the Fine control is normally set at 7 or higher.

Typical Settings For 7018 (1/8 in) Electrode:
- Set Weld Process Selector switch to + Stick position.
- Set Coarse Range switch to 60-140 (1/8") position.
- Set Fine control at 7 or higher for best results.

Electrode Selection Table (Beneath Cover)

<table>
<thead>
<tr>
<th>ELECTRODE</th>
<th>DIAMETER</th>
<th>AMPERAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010 & 6011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>5/32</td>
<td>1/8</td>
<td>3/16 7/32 1/4</td>
</tr>
<tr>
<td>6013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>1/16 5/32 3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
<tr>
<td>6014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>3/16</td>
<td>5/32 1/4</td>
</tr>
<tr>
<td>7/32</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>7014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
<tr>
<td>7018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
<tr>
<td>7024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
<tr>
<td>Ni-Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
<tr>
<td>308L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1/8</td>
<td>3/16 7/32</td>
</tr>
<tr>
<td>1/4</td>
<td>3/16 7/32</td>
<td></td>
</tr>
</tbody>
</table>

Tools Needed:

- For best arc starts and best results using weld and generator power together, use a low Coarse Range setting and the Fine control set at 7 or higher.

- Stop engine.

- Be sure to use the correct size weld cables (see Section 5-11).

- For best performance, set the Coarse Range switch to the lowest range that covers the desired weld amperage. Use the Fine control to select the desired amperage within the range selected. When properly set, the Fine control is normally set at 7 or higher.

Electrode Selection Table

- The control panel shows the typical settings for welding with a 7018 (1/8 in) electrode. Consult the amperage selection tables below if welding with other electrodes.

- Set Weld Process Selector switch to + Stick position.
- Set Coarse Range switch to 60-140 (1/8") position.
- Set Fine control at 7 or higher for best results.

Electrode Selection Table (Beneath Cover)

- Tools Needed:
 - 3/4 in
6-5. Typical MIG Welding Connections And Settings

A. Solid Wire Applications

Stop engine.

This section provides general guidelines and may not suit all applications.

The control panel shows the typical settings for welding with .035 (ER70S-3) solid wire. Use Argon-based shielding gas.

Note Coarse Range, Fine Control, and Weld Process switch settings.

Typical Control Settings For .035 (ER70S-3) Solid Wire – Short Circuit Transfer

1. Work Clamp
2. Wire Feeder
3. MIG Gun
4. Gun Trigger Plug
5. Voltage Sensing Clamp
6. Gas Cylinder:
 75/25 Argon-Based Gas for Short Circuit Transfer
7. Gas Hose

Connect work cable to welding generator Work terminal. Connect cable from wire feeder to cable from welding generator Electrode terminal.

Be sure to use the correct size weld cables (see Section 5-11).

Loosen MIG gun securing knob. Insert gun end through opening in feeder and position as close as possible to drive rolls without touching. Tighten knob.

See wire feeder manual for wire threading procedure.

Insert gun trigger plug (item 4) into matching receptacle and tighten threaded collar.

Connect gas hose from feeder to regulator on cylinder.

Typical Control Settings For Short Circuit Transfer Using .035 (ER70S-3) Solid Wire And 75/25 Argon-Based Gas:

- Set Weld Process Selector switch to Wire + (DCEP) position.
- Set Coarse Range switch to Wire/ Low Range (17-22 volts) position.
- Set Fine Control to obtain minimum spatter.
- Set wire feed speed between 150-300 ipm.

Typical Control Settings For Spray Transfer Using .035 (ER70S-3) Solid Wire And 80% Or Higher Argon-Based Gas:

- Set Weld Process Selector switch to Wire + position.
- Set Coarse Range switch to Wire/ High Range (20-28 volts) position.
- Set wire feed speed between 320-500 ipm.
- Set Fine control to 3 and increase for longer arc length.
B. Self-Shielded Flux Core Wire Applications

Stop engine.

- This section provides general guidelines and may not suit all applications.
- The control panel shows the typical settings for welding with .045 (71T-11) self-shielded flux core wire.

1. Work Clamp
2. Wire Feeder
3. MIG Gun
4. Gun Trigger Plug
5. Voltage Sensing Clamp

Connect work cable to welding generator Work terminal. Connect cable from wire feeder to cable from welding generator Electrode terminal.

Be sure to use the correct size weld cables (see Section 5-11).

Loosen MIG gun securing knob. Insert gun end through opening in feeder and position as close as possible to drive rolls without touching. Tighten knob.

See wire feeder manual for wire threading procedure.

Insert gun trigger plug (item 4) into matching receptacle and tighten threaded collar.

Typical Control Settings Using .045 (71T-11) Self-Shielded Flux Core Wire:
- Set Weld Process Selector switch to Wire − position (DCEN).
- Set Coarse Range switch to Wire/Low Range (17-22 volts) position.
- Set Fine Control near minimum setting.
- Set wire feed speed between 125-200 ipm.
- Do a test weld. To increase arc length, increase Fine Control setting. To shorten arc length, reduce fine control setting or increase wire feed speed.

Tools Needed:
- Quick connector
- 3/4 in

A complete Parts List is available at www.MillerWelds.com
6-6. Typical MIG Connections And Settings Using Weld Control And Spoolgun

Typical Settings For 4043 (.035) Aluminum On 1/8 in Material:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weld Control</td>
</tr>
<tr>
<td>2</td>
<td>Spoolgun</td>
</tr>
<tr>
<td>3</td>
<td>Optional Contactor (Recommended)</td>
</tr>
<tr>
<td>4</td>
<td>Reed Switch</td>
</tr>
<tr>
<td>5</td>
<td>Weld Cable (Customer-Supplied)</td>
</tr>
<tr>
<td>6</td>
<td>Weld Control Weld Terminal</td>
</tr>
<tr>
<td>7</td>
<td>Weld Power Cable From Spoolgun</td>
</tr>
<tr>
<td>8</td>
<td>Work Clamp</td>
</tr>
<tr>
<td>9</td>
<td>Gas Hose</td>
</tr>
<tr>
<td>10</td>
<td>Argon Cylinder</td>
</tr>
<tr>
<td>11</td>
<td>Trigger Control Cord</td>
</tr>
<tr>
<td>12</td>
<td>Input Power Cord</td>
</tr>
</tbody>
</table>

This section provides general guidelines and may not suit all applications.

- Be sure to use the correct size weld cables (see Section 5-11).

- Route weld cable from welding generator Electrode terminal through reed switch to unused contactor terminal. Connect weld cable from spoolgun to weld control weld terminal (item 6).

- Connect work cable to welding generator Work terminal.

- Insert trigger control plug (item 11) into weld control receptacle. Tighten threaded collar.

- Connect ac power cord (item 12) to 120 volt ac receptacle on welding generator.

- Connect gas hose from spoolgun to regulator on Argon bottle.

- Reinstall weld control wrapper.

- Plug and sensing lead not used in this application.

Note Coarse Range and Weld Process switch settings.

Set Weld Process Selector switch to Wire + (DCEP) position.

Set Coarse Range switch to Wire/Low (17-22 volts) position.

Set Fine Control to desired voltage (arc length). Start with a low voltage setting (about 4) to prevent burnback.

Set wire feed speed between 240-270 ipm. For 1/4 in. and thicker materials, set Coarse Range switch to Wire/High and Fine Control to 6. Increase/decrease Fine Control setting to increase/decrease arc length.
SECTION 7 – OPERATING AUXILIARY EQUIPMENT

7-1. Generator Power Receptacles

If unit does not have GFCI receptacles, use GFCI-protected extension cord.

Generator power decreases as weld current increases.

Set Fine Control R1 at 10 for full generator power.

1 240 V 50 A AC Receptacle RC1
RC1 supplies 60 Hz single-phase power at weld/power speed. Maximum output is 11.0 kVA/kW.

2 120 V 20 A AC Duplex Receptacle RC2

3 120 V 20 A AC Duplex Receptacle RC3

RC2 and RC3 supply 60 Hz single-phase power at weld/power speed. Maximum output from RC2 or RC3 is 2.4 kVA/kW.

4 Supplementary Protector CB1
CB1 protects receptacles RC1, RC2, and RC3 from overload. If CB1 opens, the receptacles do not work. Place switch in On position to reset.

5 Supplementary Protector CB2

6 Supplementary Protector CB3
CB2 protects RC2 and CB3 protects RC3 from overload. If a supplementary protector opens, the receptacle does not work.

Press button to reset supplementary protector. If supplementary protector continues to open, contact Factory Authorized Service Agent.

7 Optional 120 V 20 A AC GFCI Receptacles GFCI-2 and GFCI-3
GFCI2 and GFCI3 supply 60 Hz single-phase power at weld/power speed. Maximum output from GFCI-2 or GFCI-3 is 2.4 kVA/kW. Circuit protection is the same as standard receptacles.

If a ground fault is detected, the GFCI Reset button pops out and the circuit opens to disconnect the faulty equipment. Check for damaged tools, cords, plugs, etc. connected to the receptacle. Press button to reset receptacle and resume operation.

Power is still present at the 240 volt receptacle when only one supplementary protector trips.

Unplug power cord before attempting to service accessories or tools.

At least once a month, run engine at weld/power speed and press Test button to verify GFCI is working properly.

Combined output of all receptacles limited to 11.0 kVA/kW rating of the generator.

EXAMPLE: If 20 A is drawn from each 120 V duplex receptacle, only 23 A is available at the 240V receptacle:

\[2 \times (120 \text{ V} \times 20 \text{ A}) + (240 \text{ V} \times 26 \text{ A}) = 11.0 \text{ kVA/kW}\]
7-2. Simultaneous Weld And Power

<table>
<thead>
<tr>
<th>Weld Current in Amperes</th>
<th>Total Power in Watts</th>
<th>120 V Full kVA Receptacle Amperes</th>
<th>240 V Full kVA Receptacle Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2200</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>180</td>
<td>3500</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>125</td>
<td>5200</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>90</td>
<td>8000</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>0</td>
<td>11,000</td>
<td>92</td>
<td>46</td>
</tr>
</tbody>
</table>

7-3. Wiring Optional 240 Volt Plug

The plug can be wired for a 240 V, 2-wire load or a 120/240V, 3-wire load. See circuit diagram.

1. Plug Wired for 120/240 V, 3-Wire Load

When wired for 120 V loads, each duplex receptacle shares a load with one half of 240 V receptacle.

2. Plug Wired for 240 V, 2-Wire Load

3. Neutral (Silver) Terminal
4. Load 1 (Brass) Terminal
5. Load 2 (Brass) Terminal
6. Ground (Green) Terminal
7. Amperes Available using 120/240 V Plug

Tools Needed:

One 240 V load or two 120 V loads.
SECTION 8 – MAINTENANCE

8-1. Routine Maintenance

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Task(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 8 Hours</td>
<td>Fuel Level</td>
<td>Section 5-7</td>
</tr>
<tr>
<td>Every 20 Hours</td>
<td>Oil Level</td>
<td>Section 8-3</td>
</tr>
<tr>
<td>Every 25 Hours</td>
<td>Spark Arrestor Screen</td>
<td>Section 8-4</td>
</tr>
<tr>
<td>Every 50 Hours</td>
<td>Air Cleaner Wrapper</td>
<td></td>
</tr>
<tr>
<td>Every 100 Hours</td>
<td>Weld Terminals</td>
<td>Engine Manual, Sections 8-4, 8-7, 8-8</td>
</tr>
<tr>
<td>Every 200 Hours</td>
<td>Battery Terminals, Cooling System, Oil Filter</td>
<td>Engine Manual, Section 8-7</td>
</tr>
<tr>
<td>Every 500 Hours</td>
<td>Weld Cables, Slip Rings*, Brushes*, Valve Clearance*</td>
<td>Engine Manual</td>
</tr>
</tbody>
</table>

NOTICE – This equipment meets US EPA Evaporative Standards. Be sure fuel system replacement parts meet EPA Emission Family BMEMPNHEQ2CY.
8-3. Servicing Optional Spark Arrestor

⚠️ Stop engine and let cool.
1 Spark Arrestor Screen
Clean and inspect screen. Replace spark arrestor if screen wires are broken or missing.

Tools Needed:

1 Spark Arrestor Screen

8-4. Servicing Air Cleaner

⚠️ Stop engine.
NOTICE – Do not run engine without air cleaner or with dirty element.
1 Precleaner
Wash precleaner with soap and water solution. Allow precleaner to air dry completely.
Spread 1 tablespoon SAE 30 oil evenly into precleaner. Squeeze out excess oil.
2 Element
Replace element if damaged, dirty, or oily.

Tools Needed:

1/4 in.

1. Precleaner
2. Element

Subaru–Powered

Kohler–Powered
8-5. Overload Protection

Stop engine. Disconnect negative (−) battery cable.
1 Fuse F1 (See Section 10-1)
F1 protects the weld excitation winding from overload. If F1 opens, weld output stops or is low.
2 Fuse F2 (See Section 10-1)
F2 protects the generator power excitation winding from overload. If F2 opens, generator power output stops or is low.
3 Fuse F6 (See Section 10-1)
F6 protects the engine wiring system from overload. If F6 opens, engine will not crank.
Replace any open fuses. Reinstall cover before operating.

If a fuse opens, it usually indicates a more serious problem exists. Contact a Factory Authorized Service Agent.

Tools Needed:
3/8 in

8-6. Electronic Fuel Injection (EFI) System And Servicing Information

NOTICE – EFI system components can be damaged if these precautions are not followed:
• Do not disconnect or reconnect the wiring harness connector to the control unit or any individual components with the Engine Control switch On.
• Never attempt to service any fuel system component while engine is running or the Engine Control switch is On.
• Clean any joint or fitting with approved cleaning solvent before opening to prevent dirt from entering the system.
• Cleanliness is essential and must be maintained at all times when servicing or working on the EFI system. Dirt can cause significant problems.
• Always depressurize the fuel system through the test valve in the fuel rail before disconnecting or servicing any fuel system components.
• Do not used compressed air if the system is open.
• Avoid direct water or spray contact with system components.
8-7. Changing Engine Oil, Oil Filter, and Fuel Filter (Subaru-Powered Units)

Stop engine and let cool.

1. Oil Drain Valve
2. Oil Filter

Change engine oil and filter according to engine owner’s manual.

NOTICE – Close valve and valve cap before adding oil and running engine.

Fill crankcase with new oil to full mark on dipstick (see Section 5-7).

3. Fuel Filter
4. Fuel Line

Replace line if cracked or worn. Install new filter. Wipe up any spilled fuel.

Start engine, and check for fuel leaks.

Stop engine, tighten connections as necessary, and wipe up fuel.

Reset oil maintenance countdown by leaving the engine off and flipping Engine Control switch from Run/Idle to Run three times.

Tools Needed:

![Oil Check](image1)

![Oil Fill](image2)

![Full](image3)

![2](image4)

![3](image5)

![4](image6)
8-8. Changing Engine Oil, Oil Filter, And Fuel Filter (Kohler-Powered Units)

⚠️ Stop engine and let cool.
1 Oil Drain Valve
2 Oil Filter
Change engine oil and filter according to engine manual.

NOTICE – Close valve and valve cap before adding oil and running engine.

Fill crankcase with new oil to full mark on dipstick (see Section 5-8).

3 Secondary Fuel Filter (EFI Models Only)
4 Primary Fuel Filter
5 Fuel Line
Replace line if cracked or worn. Install new filter; Wipe up any spilled fuel.
Start engine, and check for fuel leaks.

⚠️ Stop engine, tighten connections as necessary, and wipe up fuel.

Reset oil maintenance countdown by leaving the engine off and flipping Engine Control switch from Run/Idle to Run three times.

Tools Needed:
- [Image of tools]
8-9. Adjusting Engine Speed (Kohler Carbureted Units [CH-23])

After tuning engine, check engine speeds with a tachometer (see table). If necessary, adjust speeds as follows:

Start engine and run until warm. Turn Fine Control to 10.

Remove rear panel and air cleaner to access idle speed adjustments. Remove top cover to access weld/power speed adjustments.

Idle Speed Adjustment

Move Engine Control switch to Run/Idle position.

1. Throttle Solenoid
2. Mounting Screw
3. Idle Speed Screw

Loosen mounting screw. Adjust solenoid position so engine runs at idle speed. If necessary, back out idle speed screw so solenoid can be moved to correct position. Tighten mounting screw. Be sure solenoid linkage works smoothly.

Turn idle speed screw for fine adjustments.

Weld/Power Speed Adjustment

Move Engine Control switch to Run position.

4. Weld/Power Speed Adjustment Nut
5. Lock Nut

Loosen lock nut. Turn adjustment nut until engine runs at weld/power speed. Tighten lock nut.

⚠️ Stop engine.

Reinstall air cleaner, end panel, and top cover.

Tools Needed:

- 1/4, 3/8 in.
8-10. Adjusting Engine Speed (Kohler EFI Units [ECH-730])

After tuning engine, check engine speeds with a tachometer (see table). If necessary, adjust speeds as follows:

- Start engine and run until warm.
- Turn A/V control to 10.
- Remove rear panel and air cleaner to access idle speed adjustments.
- Remove top cover to access weld/power speed adjustments.

Idle Speed Adjustment

Move Engine Control switch to Run/Idle position.

1. Throttle Solenoid
2. Mounting Screw
3. Idle Speed Screw

Loosen mounting screw. Adjust solenoid position so engine runs at idle speed. If necessary, back out idle speed screw so solenoid can be moved to correct position. Tighten mounting screw. Be sure solenoid linkage works smoothly.

Turn idle speed screw for fine adjustments.

Weld/Power Speed Adjustment

Move Engine Control switch to Run position.

4. Weld/Power Speed Adjustment Nut
5. Lock Nut

Loosen lock nut. Turn adjustment nut until engine runs at weld/power speed. Tighten lock nut.

Close and secure top cover access panel.

⚠️ Stop engine.

Reinstall air cleaner, end panel, and top cover.

Tools Needed:

- 1/4, 3/8 in.
8-11. Adjusting Engine Speed (Subaru-Powered Units)

After tuning engine, check engine speeds with a tachometer (see table). If necessary, adjust speeds as follows:

Start engine and run until warm.

Remove rear panel and air cleaner to access idle speed adjustments. Remove top cover to access weld/power speed adjustments.

Idle Speed Adjustment

Move Engine Control switch to Run/Idle position.

1. Throttle Solenoid
2. Mounting Screws
3. Idle Speed Screw

Loosen mounting screws. Adjust solenoid position so engine runs at idle speed. If necessary, back out idle speed screw so solenoid can be moved to correct position. Tighten mounting screws. Be sure solenoid linkage works smoothly.

Turn idle speed screw for fine adjustments.

Weld/Power Speed Adjustment

Move Engine Control switch to Run position.

4. Jam Nut
5. Lock Nut
6. Weld/Power Speed Adjustment Screw

Loosen jam nut and lock nut. Turn adjustment screw until engine runs at weld/power speed. Tighten jam nut, and then tighten lock nut.

⚠️ **Stop engine.**

Reinstall air cleaner, rear panel, and top cover.
SECTION 9 – TROUBLESHOOTING

9-1. Welding Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low or no weld output; generator power output okay at ac receptacles.</td>
<td>Check control settings. Check weld connections. Check fuse F1, and replace if open (see Section 8-5). Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifiers SR2 and SR3.</td>
</tr>
<tr>
<td>No weld output or generator power output at ac receptacles.</td>
<td>Be sure all equipment is disconnected from receptacles when starting unit. Check fuses F1 and F2, and replace if open (see Section 8-5). Check plug PLG6 connection. Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifiers SR2, SR3.</td>
</tr>
<tr>
<td>Low weld output.</td>
<td>Check fuse F1, and replace if open (see Section 8-5). Check control settings. Check engine speed, and adjust if necessary (see Section 8-11 or 8-9). Service air cleaner according to engine manual. Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifiers SR2, SR3.</td>
</tr>
<tr>
<td>High weld output.</td>
<td>Check control settings. Check engine speed, and adjust if necessary (see Section 8-11 or 8-9).</td>
</tr>
<tr>
<td>Erratic weld output.</td>
<td>Check control settings. Tighten and clean connections to electrode and workpiece. Use dry, properly-stored electrodes for Stick and TIG welding. Remove excessive coils from weld cables. Clean and tighten connections both inside and outside welding generator. Check engine speed, and adjust if necessary (see Section 8-11 or 8-9). Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifiers SR2, SR3.</td>
</tr>
</tbody>
</table>

9-2. Generator Power Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No or low generator power output at ac receptacles; weld output okay.</td>
<td>Reset supplementary protector(s) (see Section 7-1). Press optional GFCI receptacle Reset button (see Section 7-1). Check fuse F2, and replace if open (see Section 8-5). Check plug PLG6 connection. Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifier SR3.</td>
</tr>
<tr>
<td>No generator power or weld output.</td>
<td>Be sure all equipment is disconnected from receptacles when starting unit. Check fuses F1 and F2, and replace if open (see Section 8-5). Check plug PLG6 connection. Have Factory Authorized Service Agent check brushes, slip rings, and integrated rectifiers SR2 and SR3.</td>
</tr>
<tr>
<td>Trouble</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Low power output at AC receptacles.</td>
<td>Check fuse F2, and replace if open (see Section 8-5). Increase Fine control R1 setting to max.</td>
</tr>
<tr>
<td>High power output at AC receptacles.</td>
<td>Check engine speed, and adjust if necessary (see Section 8-11 or 8-9).</td>
</tr>
<tr>
<td>Erratic power output at AC receptacles.</td>
<td>Check fuel level. Check engine speed, and adjust if necessary (see Section 8-11 or 8-9). Check receptacle wiring and connections. Have Factory Authorized Service Agent check brushes and slip rings.</td>
</tr>
</tbody>
</table>

9-3. Engine Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine will not crank.</td>
<td>Check fuse F6, and replace if open (see Section 8-5). Check battery voltage. Check battery connections and tighten if necessary. Check plug PLG4 and plug PLG8 connections. Have Factory Authorized Service Agent check Engine Control switch S2.</td>
</tr>
<tr>
<td>Engine will not start.</td>
<td>Check fuel level. Check battery voltage. Check battery connections and tighten if necessary. Check oil level (see Section 5-7 or 5-8). Check low oil pressure shutdown switch. Have Factory Authorized Service Agent check fuel shutoff solenoid FS1 (carbureted engine only).</td>
</tr>
<tr>
<td>Engine starts but stops when Engine Control switch returns to Run position.</td>
<td>Check oil level. Check and refill crankcase with proper viscosity oil for operating temperature, if necessary. Check low oil pressure shutdown switch.</td>
</tr>
<tr>
<td>Engine stopped during normal operation.</td>
<td>Check fuel level. Replace fuel filter(s) (see Section 8-7 or 8-8). Check oil level (see Section 5-7 or 5-8). Check low oil pressure shutdown switch. Periodically recharge battery (approximately every 3 months). Replace battery. Check voltage regulator and connections according to engine manual. Have Factory Authorized Service Agent check fuel shutoff solenoid FS1 (carbureted engine only).</td>
</tr>
<tr>
<td>Battery Discharges between uses.</td>
<td>Clean battery, terminals, and posts with baking soda and water solution; rinse with clear water. Periodically recharge battery (approximately every 3 months). Replace battery. Check voltage regulator and connections according to engine manual.</td>
</tr>
<tr>
<td>Engine idles but does not come up to weld speed.</td>
<td>Have Factory Authorized Service Agent check fuel gauge/hourmeter/idle control, and current transformer CT1.</td>
</tr>
</tbody>
</table>
Trouble Remedy

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable or sluggish engine speeds.</td>
<td>Readjust throttle linkage if necessary. Check throttle solenoid TS1 for smooth operation.
Check oil level. Oil level should not exceed Full mark on dipstick. Fuel pump will operate erratically if crankcase is overfilled.</td>
</tr>
<tr>
<td>Engine does not return to idle speed.</td>
<td>Remove weld and generator power loads.
Check throttle linkage for smooth, non-binding operation.
Have Factory Authorized Service Agent check idle module PC1, current transformer CT1, Engine Control switch S2, and throttle solenoid TS1.</td>
</tr>
<tr>
<td>During operation in near freezing temperatures, engine starts and goes to idle but stalls after a few minutes.</td>
<td>Treat fuel with isopropyl alcohol de-icer product.
Place Engine Control switch in the Run position until unit has been in operation and loaded for a period of time.</td>
</tr>
<tr>
<td>During operation in severe cold weather, engine starts and goes to idle but stalls after a few minutes.</td>
<td>Install engine manufacturer’s kit for cold-weather operation.</td>
</tr>
</tbody>
</table>

SECTION 10 – PARTS LIST

10-1. Recommended Spare Parts

<table>
<thead>
<tr>
<th>Dia. Mkgs.</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dia.</td>
<td>Part No.</td>
<td>Description</td>
<td>Quantity</td>
</tr>
<tr>
<td>F1, F2</td>
<td>169296</td>
<td>Fuse, Mintr Gl 25. Amp 125 Volt</td>
<td>2</td>
</tr>
<tr>
<td>F6</td>
<td>215621</td>
<td>Fuse, 30 Amp Ato Type</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>215984</td>
<td>Filter, Fuel In–line .250 (Kohler CH23)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>230015</td>
<td>Tune–up & Filter Kit, Kohler CH23 (Includes)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>230016</td>
<td>Air Filter Element, Kohler</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>066698</td>
<td>Oil Filter, Kohler</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>215985</td>
<td>Filter, Fuel w/Clamps & 1/4 in Fuel Line</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>067007</td>
<td>Spark Plug</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>230017</td>
<td>Air Filter Wrapper</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>246115</td>
<td>Tune–up & Filter Kit, Kohler ECH730 (includes)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>230016</td>
<td>Air Filter Element</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>066698</td>
<td>Oil Filter</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>246117</td>
<td>Filter, Fuel w/Clamps (Primary)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>246123</td>
<td>Filter, Fuel w/Clamps (Secondary)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>067007</td>
<td>Spark Plug</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>230017</td>
<td>Air Filter Wrapper</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>237857</td>
<td>Filter, Fuel In–line .250 (Subaru)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>199062</td>
<td>Tune–up & Filter Kit, Subaru (Includes)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>198755</td>
<td>Element, Air Filter</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>198754</td>
<td>Filter, Oil</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>241408</td>
<td>Filter, Fuel w/Clamps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>198777</td>
<td>Spark Plug</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTICE - This equipment meets US EPA Evaporative Standards. Be sure fuel system replacement parts meet EPA Emission Family BMEMPNHE2Q2CY.

Figure 11-1. Circuit Diagram For Welding Generator
12-1. Selecting Equipment

- Generator Power Receptacles – Neutral Bonded To Frame
- 3-Prong Plug From Case Grounded Equipment
- 2-Prong Plug From Double Insulated Equipment

Be sure equipment has double insulated symbol and/or wording on it.

Do not use 2-prong plug unless equipment is double insulated.

Always ground generator frame to vehicle frame to prevent electric shock and static electricity hazards.

Also see AWS Safety & Health Fact Sheet No. 29, Grounding of Portable And Vehicle Mounted Welding Generators.

- Equipment Grounding Terminal (On Front Panel)
- Grounding Cable (Not Supplied)
- Metal Vehicle Frame

Connect cable from equipment ground terminal to metal vehicle frame. Use #8 AWG or larger insulated copper wire.

Electrically bond generator frame to vehicle frame by metal-to-metal contact.

Bed liners, shipping skids, and some running gear insulate the welding generator from the vehicle frame. Always connect a ground wire from the generator equipment grounding terminal to bare metal on the vehicle frame as shown.

If unit does not have GFCI receptacles, use GFCI-protected extension cord.
12-3. Grounding When Supplying Building Systems

1 Equipment Grounding Terminal
2 Grounding Cable
 Use #8 AWG or larger insulated copper wire.
3 Ground Device
 Use ground device as stated in electrical codes.

! Ground generator to system earth ground if supplying power to a premises (home, shop, farm) wiring system.

! Also see AWS Safety & Health Fact Sheet No. 29, Grounding of Portable and Vehicle Mounted Welding Generators.

12-4. How Much Power Does Equipment Require?

1 Resistive Load
 A light bulb is a resistive load and requires a constant amount of power.
2 Non-Resistive Load
 Equipment with a motor is a non-resistive load and requires approximately six times more power while starting the motor than when running (see Section 12-8).
3 Rating Data
 Rating shows volts and amperes, or watts required to run equipment.

 \[\text{Amperes} \times \text{Volts} = \text{Watts} \]

 Example 1: If a drill uses 4.5 amperes at 115 volts, calculate its running power requirement in watts.
 \[4.5 \text{ A} \times 115 \text{ V} = 520 \text{ W} \]
 The load applied by the drill is 520 watts.

 Example 2: If three 200 watt flood lamps are used with the drill from Example 1, add the individual loads to calculate total load.
 \[(3 \times 200\text{ W}) + 520 \text{ W} = 1120 \text{ W} \]
 The total load applied by the three flood lamps and drill is 1120 watts.
12-5. Approximate Power Requirements For Industrial Motors

<table>
<thead>
<tr>
<th>Industrial Motors</th>
<th>Rating</th>
<th>Starting Watts</th>
<th>Running Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split Phase</td>
<td>1/8 HP</td>
<td>800</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1/6 HP</td>
<td>1225</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1/4 HP</td>
<td>1600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>1/3 HP</td>
<td>2100</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>1/2 HP</td>
<td>3175</td>
<td>875</td>
</tr>
<tr>
<td>Capacitor Start-Induction Run</td>
<td>1/3 HP</td>
<td>2020</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>1/2 HP</td>
<td>3075</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>3/4 HP</td>
<td>4500</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>1 HP</td>
<td>6100</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>1-1/2 HP</td>
<td>8200</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>2 HP</td>
<td>10550</td>
<td>2850</td>
</tr>
<tr>
<td></td>
<td>3 HP</td>
<td>15900</td>
<td>3900</td>
</tr>
<tr>
<td></td>
<td>5 HP</td>
<td>23300</td>
<td>6800</td>
</tr>
<tr>
<td>Capacitor Start-Capacitor Run</td>
<td>1-1/2 HP</td>
<td>8100</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>5 HP</td>
<td>23300</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>7-1/2 HP</td>
<td>35000</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>10 HP</td>
<td>46700</td>
<td>10700</td>
</tr>
<tr>
<td>Fan Duty</td>
<td>1/8 HP</td>
<td>1000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1/6 HP</td>
<td>1400</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>1/4 HP</td>
<td>1850</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>1/3 HP</td>
<td>2400</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>1/2 HP</td>
<td>3500</td>
<td>1100</td>
</tr>
</tbody>
</table>

12-6. Approximate Power Requirements For Farm/Home Equipment

<table>
<thead>
<tr>
<th>Farm/Home Equipment</th>
<th>Rating</th>
<th>Starting Watts</th>
<th>Running Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Tank De-Icer</td>
<td></td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Grain Cleaner</td>
<td>1/4 HP</td>
<td>1650</td>
<td>650</td>
</tr>
<tr>
<td>Portable Conveyor</td>
<td>1/2 HP</td>
<td>3400</td>
<td>1000</td>
</tr>
<tr>
<td>Grain Elevator</td>
<td>3/4 HP</td>
<td>4400</td>
<td>1400</td>
</tr>
<tr>
<td>Milk Cooler</td>
<td></td>
<td>2900</td>
<td>1100</td>
</tr>
<tr>
<td>Milker (Vacuum Pump)</td>
<td>2 HP</td>
<td>10500</td>
<td>2800</td>
</tr>
<tr>
<td>FARM DUTY MOTORS</td>
<td>1/3 HP</td>
<td>1720</td>
<td>720</td>
</tr>
<tr>
<td>Std. (e.g. Conveyors, Feed Augers,</td>
<td>1/2 HP</td>
<td>2575</td>
<td>975</td>
</tr>
<tr>
<td>Compressors)</td>
<td>3/4 HP</td>
<td>4500</td>
<td>1400</td>
</tr>
<tr>
<td>Compressors)</td>
<td>1 HP</td>
<td>6100</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>1-1/2 HP</td>
<td>8200</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>2 HP</td>
<td>10550</td>
<td>2850</td>
</tr>
<tr>
<td></td>
<td>3 HP</td>
<td>15900</td>
<td>3900</td>
</tr>
<tr>
<td></td>
<td>5 HP</td>
<td>23300</td>
<td>6800</td>
</tr>
<tr>
<td>High Torque (e.g. Barn Cleaners,</td>
<td>1-1/2 HP</td>
<td>8100</td>
<td>2000</td>
</tr>
<tr>
<td>Silo Unloaders, Silo Hoists, Bunk</td>
<td>5 HP</td>
<td>23300</td>
<td>6000</td>
</tr>
<tr>
<td>Feeders)</td>
<td>7-1/2 HP</td>
<td>35000</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>10 HP</td>
<td>46700</td>
<td>10700</td>
</tr>
<tr>
<td>3-1/2 cu. ft. Mixer</td>
<td>1/2 HP</td>
<td>3300</td>
<td>1000</td>
</tr>
<tr>
<td>High Pressure 1.8 Gal/Min</td>
<td>500 PSI</td>
<td>3150</td>
<td>950</td>
</tr>
<tr>
<td>Washer 2 gal/min</td>
<td>550 PSI</td>
<td>4500</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>700 PSI</td>
<td>6100</td>
<td>1600</td>
</tr>
<tr>
<td>Refrigerator or Freezer</td>
<td></td>
<td>3100</td>
<td>800</td>
</tr>
<tr>
<td>Shallow Well Pump</td>
<td>1/3 HP</td>
<td>2150</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>1/2 HP</td>
<td>3100</td>
<td>1000</td>
</tr>
<tr>
<td>Sump Pump</td>
<td>1/3 HP</td>
<td>2100</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>1/2 HP</td>
<td>3200</td>
<td>1050</td>
</tr>
</tbody>
</table>
12-7. Approximate Power Requirements For Contractor Equipment

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Rating</th>
<th>Starting Watts</th>
<th>Running Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Drill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 in</td>
<td></td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>3/8 in</td>
<td></td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>1/2 in</td>
<td></td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Circular Saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1/2 in</td>
<td></td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>7-1/4 in</td>
<td></td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>8-1/4 in</td>
<td></td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Table Saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 in</td>
<td></td>
<td>4500</td>
<td>1500</td>
</tr>
<tr>
<td>10 in</td>
<td></td>
<td>6300</td>
<td>1800</td>
</tr>
<tr>
<td>Band Saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 in</td>
<td></td>
<td>2500</td>
<td>1100</td>
</tr>
<tr>
<td>Bench Grinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 in</td>
<td></td>
<td>1720</td>
<td>720</td>
</tr>
<tr>
<td>8 in</td>
<td></td>
<td>3900</td>
<td>1400</td>
</tr>
<tr>
<td>10 in</td>
<td></td>
<td>5200</td>
<td>1600</td>
</tr>
<tr>
<td>Air Compressor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 HP</td>
<td></td>
<td>3000</td>
<td>1000</td>
</tr>
<tr>
<td>1 HP</td>
<td></td>
<td>6000</td>
<td>1500</td>
</tr>
<tr>
<td>1-1/2 HP</td>
<td></td>
<td>8200</td>
<td>2200</td>
</tr>
<tr>
<td>2 HP</td>
<td></td>
<td>10500</td>
<td>2800</td>
</tr>
<tr>
<td>Electric Chain Saw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2 HP, 12 in</td>
<td></td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>2 HP, 14 in</td>
<td></td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Electric Trimmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 9 in</td>
<td></td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Heavy Duty 12 in</td>
<td></td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Electric Cultivator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3 HP</td>
<td></td>
<td>2100</td>
<td>700</td>
</tr>
<tr>
<td>Elec. Hedge Trimmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 in</td>
<td></td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Flood Lights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HID</td>
<td></td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>HID</td>
<td>Metal Halide</td>
<td>313</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vapor</td>
<td>1250</td>
<td>1000</td>
</tr>
<tr>
<td>Submersible Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 gph</td>
<td></td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Centrifugal Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 gph</td>
<td></td>
<td>900</td>
<td>500</td>
</tr>
<tr>
<td>Floor Polisher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 HP, 16 in</td>
<td></td>
<td>4500</td>
<td>1400</td>
</tr>
<tr>
<td>1 HP, 20 in</td>
<td></td>
<td>6100</td>
<td>1600</td>
</tr>
<tr>
<td>High Pressure Washer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 HP</td>
<td></td>
<td>3150</td>
<td>950</td>
</tr>
<tr>
<td>3/4 HP</td>
<td></td>
<td>4500</td>
<td>1400</td>
</tr>
<tr>
<td>1 HP</td>
<td></td>
<td>6100</td>
<td>1600</td>
</tr>
<tr>
<td>55 gal Drum Mixer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 HP</td>
<td></td>
<td>1900</td>
<td>700</td>
</tr>
<tr>
<td>Wet & Dry Vac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 HP</td>
<td></td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>2-1/2 HP</td>
<td></td>
<td>1300</td>
<td>1300</td>
</tr>
</tbody>
</table>
12-8. Power Required To Start Motor

Single-Phase Induction Motor Starting Requirements

<table>
<thead>
<tr>
<th>Motor Start Code</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>KVA/HP</td>
<td>6.3</td>
<td>7.1</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td>11.2</td>
<td>12.5</td>
<td>14.0</td>
</tr>
</tbody>
</table>

To find starting amperage:

Step 1:
Find code and use table to find kVA/HP. If code is not listed, multiply running amperage by six to find starting amperage.

Step 2:
Find Motor HP and Volts.

Step 3:
Determine starting amperage (see example).

Welding generator amperage output must be at least twice the motor's running amperage.

\[
\text{Starting Amperage} = \frac{(\text{kVA/HP} \times \text{HP} \times 1000)}{\text{Volts}}
\]

Example: Calculate starting amperage required for a 230 V, 1/4 HP motor with a motor start code of M.

\[
\begin{align*}
\text{Volts} & = 230, \quad \text{HP} = 1/4, \quad \text{kVA/HP} = 11.2 \\
\text{Starting Amperage} & = \frac{(11.2 \times 1/4 \times 1000)}{230} = 12.2A
\end{align*}
\]

Starting the motor requires 12.2 amperes.

12-9. How Much Power Can Generator Supply?

1. Limit Load To 90% Of Generator Output
 - Always start non-resistive (motor) loads in order from largest to smallest, and add resistive loads last.

2. 5 Second Rule
 - If motor does not start within 5 seconds, turn off power to prevent motor damage. Motor requires more power than generator can supply.
1. Utility Electrical Service

2. Transfer Switch

3. Fused Disconnect Switch (If Required)

4. Welding Generator Output

5. Essential Loads

- Have only qualified persons perform these connections according to all applicable codes and safety practices.
- Properly install and ground this equipment according to its Owner’s Manual and national, state, and local codes.

Customer-supplied equipment is required if generator will supply standby power during emergencies or power outages.

1. Utility Electrical Service
2. Transfer Switch (Double-Throw)
 - Switch transfers the electrical load from electric utility service to the generator. Transfer load back to electric utility when service is restored.
 - Install correct switch (customer-supplied). Switch rating must be same as or greater than the branch overcurrent protection.
3. Fused Disconnect Switch
 - Install correct switch (customer-supplied) if required by electrical code.
4. Welding Generator Output
 - Generator output voltage and wiring must be consistent with regular (utility) system voltage and wiring.
 - Connect generator with temporary or permanent wiring suitable for the installation.
 - Turn off or unplug all equipment connected to generator before starting or stopping engine. When starting or stopping, the engine has low speed which causes low voltage and frequency.
5. Essential Loads
 - Generator output may not meet the electrical requirements of the premises. If generator does not produce enough output to meet all requirements, connect only essential loads (pumps, freezers, heaters, etc. – See Section 12-4).
12-11. Selecting Extension Cord (Use Shortest Cord Possible)

Cord Lengths for 120 Volt Loads

If unit does not have GFCI receptacles, use GFCI-protected extension cord.

<table>
<thead>
<tr>
<th>Current (Amperes)</th>
<th>Load (Watts)</th>
<th>Maximum Allowable Cord Length in ft (m) for Conductor Size (AWG)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>840</td>
<td>400 (122)</td>
</tr>
<tr>
<td>10</td>
<td>1200</td>
<td>400 (122)</td>
</tr>
<tr>
<td>15</td>
<td>1800</td>
<td>300 (91)</td>
</tr>
<tr>
<td>20</td>
<td>2400</td>
<td>225 (68)</td>
</tr>
<tr>
<td>25</td>
<td>3000</td>
<td>175 (53)</td>
</tr>
<tr>
<td>30</td>
<td>3600</td>
<td>150 (46)</td>
</tr>
<tr>
<td>35</td>
<td>4200</td>
<td>125 (38)</td>
</tr>
<tr>
<td>40</td>
<td>4800</td>
<td>112 (34)</td>
</tr>
<tr>
<td>45</td>
<td>5400</td>
<td>100 (30)</td>
</tr>
<tr>
<td>50</td>
<td>6000</td>
<td>87 (26)</td>
</tr>
</tbody>
</table>

*Conductor size is based on maximum 2% voltage drop

Cord Lengths for 240 Volt Loads

If unit does not have GFCI receptacles, use GFCI-protected extension cord.

<table>
<thead>
<tr>
<th>Current (Amperes)</th>
<th>Load (Watts)</th>
<th>Maximum Allowable Cord Length in ft (m) for Conductor Size (AWG)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1680</td>
<td>800 (244)</td>
</tr>
<tr>
<td>10</td>
<td>2400</td>
<td>800 (244)</td>
</tr>
<tr>
<td>15</td>
<td>3600</td>
<td>600 (183)</td>
</tr>
<tr>
<td>20</td>
<td>4800</td>
<td>450 (137)</td>
</tr>
<tr>
<td>25</td>
<td>6000</td>
<td>350 (107)</td>
</tr>
<tr>
<td>30</td>
<td>7000</td>
<td>300 (91)</td>
</tr>
<tr>
<td>35</td>
<td>8400</td>
<td>250 (76)</td>
</tr>
<tr>
<td>40</td>
<td>9600</td>
<td>225 (69)</td>
</tr>
<tr>
<td>45</td>
<td>10,800</td>
<td>200 (61)</td>
</tr>
<tr>
<td>50</td>
<td>12,000</td>
<td>175 (53)</td>
</tr>
</tbody>
</table>

*Conductor size is based on maximum 2% voltage drop

OM-4419 Page 58
13-1. Stick Welding Procedure

- **Tools Needed:**
 - Chipping hammer
 - Wire brush

- **Equipment Needed:**
 - Constant Current Welding Power Source

Weld current starts when electrode touches workpiece.

Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.

- **Always wear appropriate personal protective clothing.**

1. **Workpiece**
 - Make sure workpiece is clean before welding.

2. **Work Clamp**

3. **Electrode**
 - A small diameter electrode requires less current than a large one. Follow electrode manufacturer’s instructions when setting weld amperage (see Section 13-2).

4. **Insulated Electrode Holder**

5. **Electrode Holder Position**

6. **Arc Length**
 - Arc length is the distance from the electrode to the workpiece. A short arc with correct amperage will give a sharp, crackling sound.

7. **Slag**
 - Use a chipping hammer and wire brush to remove slag. Remove slag and check weld bead before making another weld pass.
13-2. Electrode and Amperage Selection Chart

<table>
<thead>
<tr>
<th>ELECTRODE DIAMETER</th>
<th>AMPERAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/32</td>
<td>50</td>
</tr>
<tr>
<td>1/8</td>
<td>100</td>
</tr>
<tr>
<td>5/32</td>
<td>150</td>
</tr>
<tr>
<td>3/16</td>
<td>200</td>
</tr>
<tr>
<td>7/32</td>
<td>250</td>
</tr>
<tr>
<td>1/4</td>
<td>300</td>
</tr>
<tr>
<td>3/32</td>
<td>350</td>
</tr>
<tr>
<td>1/8</td>
<td>400</td>
</tr>
<tr>
<td>5/32</td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRODE</th>
<th>DC</th>
<th>AC</th>
<th>POSITION</th>
<th>PENETRATION</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010</td>
<td>EP</td>
<td>ALL</td>
<td>DEEP</td>
<td>MIN, PREP, DOUGH</td>
<td>HIGH SPATTER</td>
</tr>
<tr>
<td>6011</td>
<td>EP</td>
<td>✓</td>
<td>ALL</td>
<td>DEEP</td>
<td></td>
</tr>
<tr>
<td>6013</td>
<td>EP,EN</td>
<td>✓</td>
<td>ALL</td>
<td>LOW</td>
<td>GENERAL</td>
</tr>
<tr>
<td>7014</td>
<td>EP,EN</td>
<td>✓</td>
<td>ALL</td>
<td>MED</td>
<td>SMOOTH, EASY, FAST</td>
</tr>
<tr>
<td>7018</td>
<td>EP</td>
<td>✓</td>
<td>ALL</td>
<td>MED</td>
<td>LOW HYDROGEN, STRONG</td>
</tr>
<tr>
<td>7024</td>
<td>EP,EN</td>
<td>✓</td>
<td>FLAT HORIZ FILLET</td>
<td>LOW</td>
<td>SMOOTH, EASY, FASTER</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>EP</td>
<td>✓</td>
<td>ALL</td>
<td>LOW</td>
<td>CAST IRON</td>
</tr>
<tr>
<td>308L</td>
<td>EP</td>
<td>✓</td>
<td>ALL</td>
<td>LOW</td>
<td>STAINLESS</td>
</tr>
</tbody>
</table>

EP = ELECTRODE POSITIVE (REVERSE POLARITY), EN = ELECTRODE NEGATIVE (STRAIGHT POLARITY)

13-3. Striking an Arc

1. **Electrode**
2. **Workpiece**
3. **Arc**

Scratch Technique

Drag electrode across workpiece like striking a match; lift electrode slightly after touching work. If arc goes out, electrode was lifted too high. If electrode sticks to workpiece, use a quick twist to free it.

Tapping Technique

Bring electrode straight down to workpiece; then lift slightly to start arc. If arc goes out, electrode was lifted too high. If electrode sticks to workpiece, use a quick twist to free it.
13-4. Positioning Electrode Holder

- End View Of Work Angle
- Side View Of Electrode Angle

1. Groove Welds
 - 90°
 - 90°

2. Fillet Welds
 - 45°
 - 10°-30°

13-5. Poor Weld Bead Characteristics

- Large Spatter Deposits
- Rough, Uneven Bead
- Slight Crater During Welding
- Bad Overlap
- Poor Penetration

13-6. Good Weld Bead Characteristics

- Fine Spatter
- Uniform Bead
- Moderate Crater During Welding

Weld a new bead or layer for each 1/8 in. (3.2 mm) thickness in metals being welded.

- No Overlap
- Good Penetration into Base Metal
13-7. Conditions That Affect Weld Bead Shape

Weld bead shape is affected by electrode angle, arc length, travel speed, and thickness of base metal.

- **Electrode Angle**
 - Angle Too Small
 - Correct Angle: 10° - 30°
 - Angle Too Large
 - Drag

- **Arc Length**
 - Too Short
 - Normal
 - Too Long
 - Spatter

- **Travel Speed**
 - Slow
 - Normal
 - Fast

13-8. Electrode Movement During Welding

Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads work better.

1. **Stringer Bead – Steady Movement Along Seam**
2. **Weave Bead – Side to Side Movement Along Seam**
3. **Weave Patterns**
 - Use weave patterns to cover a wide area in one pass of the electrode. Do not let weave width exceed 2-1/2 times diameter of electrode.
13-9. Groove (Butt) Joints

1. Tack Welds
 Prevent edges of joint from drawing together ahead of electrode by tack welding the materials in position before final weld.

2. Square Groove Weld
 Good for materials up to 3/16 in. (5 mm) thick.

3. Single V-Groove Weld
 Good for materials 3/16 – 3/4 in. (5-19 mm) thick. Cut bevel with oxyacetylene or plasma cutting equipment. Remove scale from material after cutting. A grinder can also be used to prepare bevels.
 Create 30 degree angle of bevel on materials in V-groove welding.

4. Double V-Groove Weld
 Good for materials thicker than 3/16 in. (5 mm).

13-10. Lap Joint

1. Electrode

2. Single-Layer Fillet Weld
 Move electrode in circular motion.

3. Multi-Layer Fillet Weld
 Weld a second layer when a heavier fillet is needed. Remove slag before making another weld pass. Weld both sides of joint for maximum strength.

13-11. Tee Joint

1. Electrode

2. Fillet Weld
 Keep arc short and move at definite rate of speed. Hold electrode as shown to provide fusion into the corner. Square edge of the weld surface.
 For maximum strength weld both sides of upright section.

3. Multi-Layer Deposits
 Weld a second layer when a heavier fillet is needed. Use any of the weaving patterns shown in Section 13-8. Remove slag before making another weld pass.
13-12. Weld Test

1. Vise
2. Weld Joint
3. Hammer

Strike weld joint in direction shown. A good weld bends over but does not break.

![Diagram showing weld joint and strike direction](image)

13-13. Troubleshooting

<p>| Porosity – small cavities or holes resulting from gas pockets in weld metal. |</p>
<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc length too long.</td>
<td>Reduce arc length.</td>
</tr>
<tr>
<td>Damp electrode.</td>
<td>Use dry electrode.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, slag, and dirt from work surface before welding.</td>
</tr>
</tbody>
</table>

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperage too high for electrode.</td>
<td>Decrease amperage or select larger electrode.</td>
</tr>
<tr>
<td>Arc length too long or voltage too high.</td>
<td>Reduce arc length or voltage.</td>
</tr>
</tbody>
</table>

Incomplete Fusion – failure of weld metal to fuse completely with base metal or a preceding weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient heat input.</td>
<td>Increase amperage. Select larger electrode and increase amperage.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding. Adjust work angle or widen groove to access bottom during welding. Momentarily hold arc on groove side walls when using weaving technique. Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, slag, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Lack Of Penetration</td>
<td>Lack Of Penetration – shallow fusion between weld metal and base metal.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Possible Causes</td>
<td>Corrective Actions</td>
</tr>
<tr>
<td>Improper joint preparation.</td>
<td>Material too thick. Joint preparation and design must provide access to bottom of groove.</td>
</tr>
<tr>
<td>Improper weld technique.</td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Increase amperage. Select larger electrode and increase amperage. Reduce travel speed.</td>
</tr>
<tr>
<td>Good Penetration</td>
<td>Excessive Penetration – weld metal melting through base metal and hanging underneath weld.</td>
</tr>
<tr>
<td>Excessive Penetration</td>
<td>Excessive Penetration – weld metal melting through base metal and hanging underneath weld.</td>
</tr>
<tr>
<td>Possible Causes</td>
<td>Corrective Actions</td>
</tr>
<tr>
<td>Excessive heat input.</td>
<td>Select lower amperage. Use smaller electrode. Increase and/or maintain steady travel speed.</td>
</tr>
<tr>
<td>Good Penetration</td>
<td>Burn-Through – weld metal melting completely through base metal resulting in holes where no metal remains.</td>
</tr>
<tr>
<td>Waviness Of Bead</td>
<td>Waviness Of Bead – weld metal that is not parallel and does not cover joint formed by base metal.</td>
</tr>
<tr>
<td>Possible Causes</td>
<td>Corrective Actions</td>
</tr>
<tr>
<td>Unsteady hand.</td>
<td>Use two hands. Practice technique.</td>
</tr>
<tr>
<td>Distortion</td>
<td>Distortion – contraction of weld metal during welding that forces base metal to move.</td>
</tr>
<tr>
<td>Base metal moves in the direction of the weld bead.</td>
<td>Base metal moves in the direction of the weld bead.</td>
</tr>
<tr>
<td>Possible Causes</td>
<td>Corrective Actions</td>
</tr>
<tr>
<td>Excessive heat input.</td>
<td>Use restraint (clamp) to hold base metal in position. Make tack welds along joint before starting welding operation. Select lower amperage for electrode. Increase travel speed. Weld in small segments and allow cooling between welds.</td>
</tr>
</tbody>
</table>
14-1. Typical MIG Process Connections Using A Voltage-Sensing Wire Feeder

Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.

Voltage sensing wire feeders are used with constant current (CC) or constant voltage (CV) power sources (14 pin receptacle not required).

If using a CC or CV welding power source without a weld output contactor, use optional secondary contactor.

For GMAW, use optional gas valve.

Voltage Sensing Wire Feeder

Constant Current (CC) Or Constant Voltage (CV) Power Source

14-2. Holding And Positioning Welding Gun

Welding wire is energized when gun trigger is pressed. Before lowering helmet and pressing trigger, be sure wire is no more than 1/2 in (13 mm) past end of nozzle, and tip of wire is positioned correctly on seam.

1. Hold Gun and Control Gun Trigger
2. Workpiece
3. Work Clamp
4. Electrode Extension (Stickout) 1/4 to 1/2 in (6 To 13 mm)
5. Cradle Gun and Rest Hand on Workpiece
14-3. Conditions That Affect Weld Bead Shape

Weld bead shape depends on gun angle, direction of travel, electrode extension (stickout), travel speed, thickness of base metal, wire feed speed (weld current), and voltage.
14-4. Gun Movement During Welding

Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads works better.

1. Stringer Bead – Steady Movement Along Seam
2. Weave Bead – Side To Side Movement Along Seam
3. Weave Patterns
 Use weave patterns to cover a wide area in one pass of the electrode.

14-5. Poor Weld Bead Characteristics

1. Large Spatter Deposits
2. Rough, Uneven Bead
3. Slight Crater During Welding
4. Bad Overlap
5. Poor Penetration

14-6. Good Weld Bead Characteristics

1. Fine Spatter
2. Uniform Bead
3. Moderate Crater During Welding
 Weld a new bead or layer for each 1/8 in (3.2 mm) thickness in metals being welded.
4. No Overlap
5. Good Penetration into Base Metal
14-7. Troubleshooting – Excessive Spatter

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed speed too high.</td>
<td>Select lower wire feed speed.</td>
</tr>
<tr>
<td>Voltage too high.</td>
<td>Select lower voltage range.</td>
</tr>
<tr>
<td>Electrode extension (stickout) too long.</td>
<td>Use shorter electrode extension (stickout).</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pickup of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
</tbody>
</table>

14-8. Troubleshooting – Porosity

Porosity – small cavities or holes resulting from gas pockets in weld metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td></td>
<td>Remove spatter from gun nozzle.</td>
</tr>
<tr>
<td></td>
<td>Check gas hoses for leaks.</td>
</tr>
<tr>
<td></td>
<td>Place nozzle 1/4 to 1/2 in (6-13 mm) from workpiece.</td>
</tr>
<tr>
<td></td>
<td>Hold gun near bead at end of weld until molten metal solidifies.</td>
</tr>
<tr>
<td>Wrong gas.</td>
<td>Use welding grade shielding gas; change to different gas.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pick up of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, and dirt from work surface before welding.</td>
</tr>
<tr>
<td></td>
<td>Use a more highly deoxidizing welding wire (contact supplier).</td>
</tr>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
</tbody>
</table>

14-9. Troubleshooting – Excessive Penetration

Excessive Penetration – weld metal melting through base metal and hanging underneath weld.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
</tbody>
</table>
14-10. Troubleshooting – Lack Of Penetration

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper joint preparation.</td>
<td>Material too thick. Joint preparation and design must provide access to bottom of groove while maintaining proper welding wire extension and arc characteristics.</td>
</tr>
<tr>
<td>Improper weld technique.</td>
<td>Maintain normal gun angle of 0 to 15 degrees to achieve maximum penetration.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher wire feed speed and/or select higher voltage range.</td>
</tr>
<tr>
<td></td>
<td>Reduce travel speed.</td>
</tr>
</tbody>
</table>

14-11. Troubleshooting – Incomplete Fusion

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher voltage range and/or adjust wire feed speed.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding.</td>
</tr>
<tr>
<td></td>
<td>Adjust work angle or widen groove to access bottom during welding.</td>
</tr>
<tr>
<td></td>
<td>Momentarily hold arc on groove side walls when using weaving technique.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Use correct gun angle of 0 to 15 degrees.</td>
</tr>
</tbody>
</table>

14-12. Troubleshooting – Burn-Through

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase and/or maintain steady travel speed.</td>
</tr>
</tbody>
</table>
14-13. Troubleshooting – Waviness Of Bead

Waviness Of Bead – weld metal that is not parallel and does not cover joint formed by base metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Unsteady hand.</td>
<td>Support hand on solid surface or use two hands.</td>
</tr>
</tbody>
</table>

14-14. Troubleshooting – Distortion

Distortion – contraction of weld metal during welding that forces base metal to move.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Use restraint (clamp) to hold base metal in position.</td>
</tr>
<tr>
<td></td>
<td>Make tack welds along joint before starting welding operation.</td>
</tr>
<tr>
<td></td>
<td>Select lower voltage range and/or reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
<tr>
<td></td>
<td>Weld in small segments and allow cooling between welds.</td>
</tr>
</tbody>
</table>
14-15. Common MIG Shielding Gases

This is a general chart for common gases and where they are used. Many different combinations (mixtures) of shielding gases have been developed over the years. The most commonly used shielding gases are listed in the following table.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spray Arc Steel</td>
</tr>
<tr>
<td>Argon</td>
<td></td>
</tr>
<tr>
<td>Argon + 1% O₂</td>
<td>Flat & Horizontal⁵ Fillet</td>
</tr>
<tr>
<td>Argon + 2% O₂</td>
<td>Flat & Horizontal⁵ Fillet</td>
</tr>
<tr>
<td>Argon + 5% O₂</td>
<td>Flat & Horizontal⁵ Fillet</td>
</tr>
<tr>
<td>Argon + 8% CO₂</td>
<td>Flat & Horizontal⁵ Fillet</td>
</tr>
<tr>
<td>Argon + 25% CO₂</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
<tr>
<td>Argon + 50% CO₂</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
<tr>
<td>CO₂</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
<tr>
<td>Helium</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
<tr>
<td>Argon + Helium</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
<tr>
<td>Tri-Mix</td>
<td>Flat & Horizontal⁷ Fillet</td>
</tr>
</tbody>
</table>

1. Globular Transfer
2. Heavy Thicknesses
3. Single Pass Welding Only
4. 90% HE + 7-1/2% AR + 2-1/2% CO₂
5. Also for GMAW-P, All Positions
Warranty Questions?
Call 1-800-4-A-MILLER for your local Miller distributor.

Your distributor also gives you...

Service
You always get the fast, reliable response you need. Most replacement parts can be in your hands in 24 hours.

Support
Need fast answers to the tough welding questions? Contact your distributor. The expertise of the distributor and Miller is there to help you, every step of the way.

LIMITED WARRANTY – Subject to the terms and conditions below, Miller Electric Mfg. Co., Appleton, Wisconsin, warrants to its original retail purchaser that new Miller equipment sold after the effective date of this limited warranty is free of defects in material and workmanship at the time it is shipped by Miller. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS.

Within the warranty periods listed below, Miller will repair or replace any warranted parts or components that fail due to such defects in material or workmanship. Miller must be notified in writing within thirty (30) days of such defect or failure, at which time Miller will provide instructions on the warranty claim procedures to be followed.

Miller shall honor warranty claims on warranted equipment listed below in the event of such a failure within the warranty time periods. All warranty time periods start on the delivery date of the equipment to the original end-user purchaser, and not to exceed one year after the equipment is shipped to a North American distributor or eighteen months after the equipment is shipped to an international distributor.

1. 5 Years Parts — 3 Years Labor
 * Original main power rectifiers only to include SCR, diodes, and discrete rectifier modules

2. 3 Years — Parts and Labor
 * Engine Driven Welding Generators (NOTE: Engines are warranted separately by the engine manufacturer.)
 * Inverter Power Sources (Unless Otherwise Stated)
 * Plasma Arc Cutting Power Sources
 * Process Controllers
 * Semi-Automatic and Automatic Wire Feeders
 * Smith 30 Series Flowgauge and Flowmeter Regulators (No Labor)
 * Transformer/Rectifier Power Sources
 * Water Coolant Systems (Integrated)

3. 2 Years — Parts
 * Auto-Darkening Helmet Lenses (No Labor)

4. 1 Year — Parts and Labor Unless Specified
 * Automatic Motion Devices
 * FanBelt and CoolBand Blower Unit (No Labor)
 * External Monitoring Equipment and Sensors
 * Field Options (NOTE: Field options are covered for the remaining warranty period of the product they are installed in, or for a minimum of one year — whichever is greater.)
 * Flowgauge and Flowmeter Regulators (No Labor)
 * RFCS Foot Controls (Except RFCS-RJ45)
 * Fume Extractors
 * HF Units
 * ICE Plasma Cutting Torches (No Labor)
 * Induction Heating Power Sources, Coolers, and Electronic Controls/Recorders
 * Load Banks
 * Motor Driven Guns (w/exception of Spoolmate Spoolguns)
 * PAPR Blower Unit (No Labor)
 * Positioners and Controllers
 * Racks
 * Running Gear/Trailers
 * Spot Welders
 * Subarc Wire Drive Assemblies
 * Water Coolant Systems (Non-Integrated)
 * Weldcraft-Branded TIG Torches (No Labor)
 * Wireless Remote Foot/Hand Controls and Receivers
 * Work Stations/Weld Tables (No Labor)

5. 6 Months — Parts
 * Batteries
 * Bernard Guns (No Labor)
 * Tregaskiss Guns (No Labor)

6. 90 Days — Parts
 * Aircraft Milers
 * Canvas Covers
 * Induction Heating Coils and Blankets, Cables, and Non-Electronic Controls
 * M-Guns
 * MIG Guns and Subarc (SAW) Guns
 * Remote Controls and RFCS-RJ45
 * Replacement Parts (No labor)
 * Roughneck Guns
 * Spoolmate Spoolguns

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, relays, work station table tops and welding curtains, or parts that fail due to normal wear. (Exception: brushes and relays are covered on all engine-driven products.)

2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.

3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B. Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, THE REMEDIES PROVIDED HEREIN ARE THE SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL MILLER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFIT), WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

ANY EXPRESS WARRANTY NOT PROVIDED HEREIN AND ANY IMPLIED WARRANTY, GUARANTEE OR REPRESENTATION AS TO PERFORMANCE AND ANY REMEDY FOR BREACH OF CONTRACT TORT OR ANY OTHER LEGAL THEORY WHICH, BUT FOR THIS PROVISION, MIGHT ARISE BY IMPLICATION, OPERATION OF LAW, CUSTOM OF TRADE OR COURSE OF DEALING, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE, WITH RESPECT TO ANY AND ALL EQUIPMENT FURNISHED BY MILLER IS EXCLUDED AND DISCLAIMED BY MILLER. Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.

miller_warr 2011-01
Owner’s Record

Please complete and retain with your personal records.

Model Name

Serial/Style Number

Purchase Date

(Date which equipment was delivered to original customer.)

Distributor

Address

City

State

Zip

For Service

Contact a DISTRIBUTOR or SERVICE AGENCY near you.

Always provide Model Name and Serial/Style Number.

Contact your Distributor for:

Welding Supplies and Consumables
Options and Accessories
Personal Safety Equipment
Service and Repair
Replacement Parts
Training (Schools, Videos, Books)
Technical Manuals (Servicing Information and Parts)
Circuit Diagrams
Welding Process Handbooks

To locate a Distributor or Service Agency visit www.millerwelds.com or call 1-800-4-A-Miller

Contact the Delivering Carrier to:

File a claim for loss or damage during shipment.

For assistance in filing or settling claims, contact your distributor and/or equipment manufacturer’s Transportation Department.