Multimatic™ 215

Processes
- Multiprocess Welding

Description
- CV CC DC 1 Phase
- Arc Welding Power Source
- Wire Feeder

OWNER’S MANUAL

Visit our website at www.MillerWelds.com
Thank you and congratulations on choosing Miller. Now you can get the job done and get it done right. We know you don’t have time to do it any other way.

That’s why when Niels Miller first started building arc welders in 1929, he made sure his products offered long-lasting value and superior quality. Like you, his customers couldn’t afford anything less. Miller products had to be more than the best they could be. They had to be the best you could buy.

Today, the people that build and sell Miller products continue the tradition. They’re just as committed to providing equipment and service that meets the high standards of quality and value established in 1929.

This Owner’s Manual is designed to help you get the most out of your Miller products. Please take time to read the Safety precautions. They will help you protect yourself against potential hazards on the worksite.

We’ve made installation and operation quick and easy. With Miller you can count on years of reliable service with proper maintenance. And if for some reason the unit needs repair, there’s a Troubleshooting section that will help you figure out what the problem is. The parts list will then help you to decide the exact part you may need to fix the problem. Warranty and service information for your particular model are also provided.
TABLE OF CONTENTS

SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING .. 1
1-1. Symbol Usage ... 1
1-2. Arc Welding Hazards .. 1
1-3. Additional Symbols For Installation, Operation, And Maintenance 3
1-4. California Proposition 65 W arnings ... 4
1-5. Principal Safety Standards ... 4
1-6. EMF Information .. 4

SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION 5
2-1. Symboles utilisés ... 5
2-2. Dangers relatifs au soudage à l’arc ... 5
2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance .. 7
2-4. Proposition californienne 65 Avertissements ... 8
2-5. Principales normes de sécurité ... 8
2-6. Informations relatives aux CEM ... 8

SECTION 3 – DEFINITIONS ... 9
3-1. Additional Safety Symbols And Definitions .. 9
3-2. Miscellaneous Symbols And Definitions ... 10

SECTION 4 – SPECIFICATIONS ... 11
4-1. Serial Number And Rating Label Location .. 11
4-2. Unit Specifications For MIG (GMAW) ... 11
4-3. Unit Specifications For TIG (GTAW) .. 11
4-4. Unit Specifications For Stick (SMAW) ... 11
4-5. Environmental Specifications ... 11
4-6. Dimensions And Weight .. 12
4-7. Duty Cycle And Overheating For MIG (GMAW) ... 13
4-8. Duty Cycle And Overheating For TIG (GTAW) .. 14
4-9. Duty Cycle And Overheating For Stick (SMAW) .. 15

SECTION 5 – INSTALLATION .. 16
5-1. Selecting A Location ... 16
5-2. Multi-Voltage Plug (MVP) Connection .. 17
5-3. Electrical Service Guide ... 18
5-4. Extension Cord Data ... 18
5-5. Connecting 120 Volt Input Power ... 19
5-6. Connecting 1-Phase Input Power For 240 VAC .. 20
5-7. Stick Welding Connections .. 22
5-8. TIG Welding Connections DCEN (Direct Current Electrode Negative) 23
5-9. Process/Polarity Table .. 24
5-10. MIG Welding Connections ... 24
5-11. MIG Gun Connection Inside Unit ... 25
5-12. Connecting Shielding Gas Supply ... 26
5-13. Installing Wire Spool And Adjusting Hub Tension 27
5-14. Threading Welding Wire .. 28
5-15. Removing MIG Gun To Replace With A Spool Gun 29
TABLE OF CONTENTS

SECTION 6 – OPERATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1. Controls</td>
<td>30</td>
</tr>
<tr>
<td>6-2. Welding Parameter Chart – 120V</td>
<td>31</td>
</tr>
<tr>
<td>6-3. Welding Parameter Chart – 240V</td>
<td>32</td>
</tr>
<tr>
<td>6-4. Entering Setup Menu</td>
<td>33</td>
</tr>
<tr>
<td>6-5. Internal Motor 24 In. Calibration (Menu 1 Of 10)</td>
<td>34</td>
</tr>
<tr>
<td>6-6. Internal Motor Run-In (Menu 2 Of 10)</td>
<td>34</td>
</tr>
<tr>
<td>6-7. Spoolmate™ 24 Inch Calibration (Menu 3 Of 10)</td>
<td>35</td>
</tr>
<tr>
<td>6-8. Spoolmate Run-In Speed (Menu 4 Of 10)</td>
<td>36</td>
</tr>
<tr>
<td>6-9. Process Logs (Menu 5 Of 10)</td>
<td>36</td>
</tr>
<tr>
<td>6-10. Primary Logs (Menu 6 Of 10)</td>
<td>37</td>
</tr>
<tr>
<td>6-11. Error Logs (Menu 7 Of 10)</td>
<td>37</td>
</tr>
<tr>
<td>6-12. Factory Reset (Menu 8 Of 10)</td>
<td>38</td>
</tr>
<tr>
<td>6-13. Display Software (Menu 9 Of 10)</td>
<td>38</td>
</tr>
<tr>
<td>6-14. Control Software (Menu 10 Of 10)</td>
<td>39</td>
</tr>
</tbody>
</table>

SECTION 7 – MAINTENANCE & TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1. Routine Maintenance</td>
<td>40</td>
</tr>
<tr>
<td>7-2. Overload Protection</td>
<td>40</td>
</tr>
<tr>
<td>7-3. Changing Drive Roll Or Wire Inlet Guide</td>
<td>41</td>
</tr>
<tr>
<td>7-4. Error Messages</td>
<td>42</td>
</tr>
<tr>
<td>7-5. Troubleshooting</td>
<td>44</td>
</tr>
</tbody>
</table>

SECTION 8 – ELECTRICAL DIAGRAM

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
</tr>
</tbody>
</table>

SECTION 9 – GMAW WELDING (MIG) GUIDELINES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
</tr>
</tbody>
</table>

SECTION 10 – STICK WELDING (SMAW) GUIDELINES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
</tbody>
</table>

SECTION 11 – SELECTING AND PREPARING A TUNGSTEN FOR DC OR AC WELDING WITH INVERTER MACHINES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

11-1. Selecting Tungsten Electrode (Wear Clean Gloves To Prevent Contamination Of Tungsten) | 63 |

11-2. Preparing Tungsten Electrode For DC Electrode Negative (DCEN) Welding Or AC Welding With Inverter Machines | 63 |

SECTION 12 – GUIDELINES FOR TIG WELDING (GTAW)

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
</tr>
</tbody>
</table>

SECTION 13 – PARTS LIST

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
</tr>
</tbody>
</table>

WARRANTY
1-1. Symbol Usage

DANGER! - Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

Notice – Indicates statements not related to personal injury.

1-2. Arc Welding Hazards

The symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-5. Read and follow all Safety Standards.

Only qualified persons should install, operate, maintain, and repair this unit.

During operation, keep everybody, especially children, away.

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- Do not touch live electrical parts.

- Wear dry, hole-free insulating gloves and body protection.

- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.

- Do not use AC output in damp areas, if movement is confined, or if there is a danger of falling.

- Use AC output ONLY if required for the welding process.

- If AC output is required, use remote output control if present on unit.

- Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when cramped; or when there is a high risk of avoidable or accidental contact with the workpiece or ground. For these conditions, use the following precautions:
 1. Use a semiautomatic DC constant voltage (wire) welder.
 2. Use a DC manual (stick) welder.
 3. Use an AC welder with reduced open-circuit voltage. In most situations, use of a DC constant voltage welder is recommended. And, do not work alone!

- Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).

- Properly install, ground, and operate this equipment according to its Owner’s Manual and national, state, and local codes.

- Always verify the supply ground – check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.

- When making input connections, attach proper grounding conductor first – double-check connections.

- Keep cords dry, free of oil and grease, and protected from hot metal and sparks.

- Frequently inspect input power cord and ground conductor for damage or bare wiring – replace immediately if damaged – bare wiring can kill.

- Turn off all equipment when not in use.

- Do not use worn, damaged, undersized, or repaired cables.

- Do not drape cables over your body.

- If earth grounding of the workpiece is required, ground it directly with a separate cable.

- Do not touch electrode if you are in contact with the work, ground, or another electrode from a different machine.

- Do not touch electrode holders connected to two welding machines at the same time since double open-circuit voltage will be present.

- Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.

- Wear a safety harness if working above floor level.

- Keep all panels and covers securely in place.

- Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.

- Insulate work clamp when not connected to workpiece.

- Do not connect more than one electrode or use cable to any single weld output terminal. Disconnect cable for process not in use.

- Use GFCI protection when operating auxiliary equipment in damp or wet locations.

SIGNIFICANT DC VOLTAGE exists in inverter welding power sources AFTER removal of input power.

- Turn Off inverter, disconnect input power, and discharge input capacitors according to instructions in Maintenance Section before touching any parts.

HOT PARTS can burn.

- Do not touch hot parts bare handed.

- Allow cooling period before working on equipment.

- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.
FUMES AND GASES can be hazardous.
Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.
- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding fumes and gases. The recommended way to determine adequate ventilation is to sample for the composition and quantity of fumes and gases to which personnel are exposed.
- If ventilation is poor, wear an approved air-supplied respirator.
- Read and understand the Safety Data Sheets (SDSs) and the manufacturer's instructions for adhesives, coatings, cleaners, consumables, coolants, degreasers, fluxes, and metals.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watch-person nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
- Do not weld in locations near degreas ing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area. The area is well ventilated, and while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.

ARC RAYS can burn eyes and skin.
Arc rays from the welding process produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.
- Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash, glare and sparks; warn others not to watch the arc.
- Wear body protection made from durable, flame-resistant material (leather, heavy cotton, wool). Body protection includes oil-free clothing such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.

WELDING can cause fire or explosion.
Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot metal, and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.
- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Do not weld where flying sparks can strike flammable material.
- Protect yourself and others from flying sparks and hot metal.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on containers that have held combustibles, or on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 and AWS A8.0 (see Safety Standards).
- Do not weld where the atmosphere can contain flammable dust, gas, or liquid vapors (such as gasoline).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.
- Do not use welder to thaw frozen pipes.

FLYING METAL or DIRT can injure eyes.
- Welding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.
- Wear approved safety glasses with side shields even under your welding helmet.

BUILDUP OF GAS can injure or kill.
- Shut off compressed gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

ELECTRIC AND MAGNETIC FIELDS (EMF) can affect Implanted Medical Devices.
- Wearers of Pacemakers and other Implanted Medical Devices should keep away.
- Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.

NOISE can damage hearing.
- Wear approved ear protection if noise level is high.

CYLINDERS can explode if damaged.
Compressed gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.
- Protect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
- Keep cylinders away from any welding or other electrical circuits.
- Never drape a welding torch over a gas cylinder.
- Never allow a welding electrode to touch any cylinder.
- Never weld on a pressurized cylinder – explosion will result.
- Use only correct compressed gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- Turn face away from valve outlet when opening cylinder valve. Do not stand in front of or behind the regulator when opening the valve.
- Keep protective cap in place over valve except when cylinder is in use or connected for use.
- Use the right equipment, correct procedures, and sufficient number of persons to lift and move cylinders.
- Read and follow instructions on compressed gas cylinders, associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.
1-3. Additional Symbols For Installation, Operation, And Maintenance

FIRE OR EXPLOSION hazard.
- Do not install or place unit on, over, or near combustible surfaces.
- Do not install unit near flammables.
- Do not overload building wiring – be sure power supply system is properly sized, rated, and protected to handle this unit.

FALLING EQUIPMENT can injure.
- Use lifting eye to lift unit only, NOT running gear, gas cylinders, or any other accessories.
- Use equipment of adequate capacity to lift and support unit.
- If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit.
- Keep equipment (cables and cords) away from moving vehicles when working from an aerial location.
- Follow the guidelines in the Applications Manual for the Revised NIOSH Lifting Equation (Publication No. 94−110) when manually lifting heavy parts or equipment.

OVERUSE can cause OVERHEATING
- Allow cooling period; follow rated duty cycle.
- Reduce current or reduce duty cycle before starting to weld again.
- Do not block or filter airflow to unit.

FLYING SPARKS can injure.
- Wear a face shield to protect eyes and face.
- Shape tungsten electrode only on grinder with proper guards in a safe location wearing proper face, hand, and body protection.
- Sparks can cause fires — keep flammables away.

STATIC (ESD) can damage PC boards.
- Put on grounded wrist strap BEFORE handling boards or parts.
- Use proper static-proof bags and boxes to store, move, or ship PC boards.

MOVING PARTS can injure.
- Keep away from moving parts.
- Keep away from pinch points such as drive rolls.

WELDING WIRE can injure.
- Do not press gun trigger until instructed to do so.
- Do not point gun toward any part of the body, other people, or any metal when threading welding wire.

BATTERY EXPLOSION can injure.
- Do not use welder to charge batteries or jump start vehicles unless it has a battery charging feature designed for this purpose.

MOVING PARTS can injure.
- Keep away from moving parts such as fans.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Have only qualified persons remove doors, panels, covers, or guards for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when maintenance is finished and before reconnecting input power.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform installation, maintenance, and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

H.F. RADIATION can cause interference.
- High-frequency (H.F.) can interfere with radio navigation, safety services, computers, and communications equipment.
- Have only qualified persons familiar with electronic equipment perform this installation.
- The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
- If notified by the FCC about interference, stop using the equipment at once.
- Have the installation regularly checked and maintained.
- Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.

ARC WELDING can cause interference.
- Electromagnetic energy can interfere with sensitive electronic equipment such as computers and computer-driven equipment such as robots.
- Be sure all equipment in the welding area is electromagnetically compatible.
- To reduce possible interference, keep weld cables as short as possible, close together, and down low, such as on the floor.
- Locate welding operation 100 meters from any sensitive electronic equipment.
- Be sure this welding machine is installed and grounded according to this manual.
- If interference still occurs, the user must take extra measures such as moving the welding machine, using shielded cables, using line filters, or shielding the work area.
1-4. California Proposition 65 Warnings

⚠️ Welding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)

⚠️ This product contains chemicals, including lead, known to the state of California to cause cancer, birth defects, or other reproductive harm. Wash hands after use.

1-5. Principal Safety Standards

1-6. EMF Information

Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). The current from arc welding (and allied processes including spot welding, gouging, plasma arc cutting, and induction heating operations) creates an EMF field around the welding circuit. EMF fields can interfere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, restrict access for passers-by or conduct individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

1. Keep cables close together by twisting or taping them, or using a cable cover.
2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep head and trunk as far away from the equipment in the welding circuit as possible.
5. Connect work clamp to workpiece as close to the weld as possible.
6. Do not work next to, sit or lean on the welding power source.
7. Do not weld whilst carrying the welding power source or wire feeder.

About Implanted Medical Devices:

Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.
SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION

Pour écarter les risques de blessure pour vous-même et pour autrui — lire, appliquer et ranger en lieu sûr ces consignes relatives aux précautions de sécurité et au mode opératoire.

2-1. Symboles utilisés

DANGER! - Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

AVIS – Indique des déclarations pas en relation avec des blessures personnelles.

2-2. Dangers relatifs au soudage à l’arc

Les symboles représentés ci-dessous sont utilisés dans ce manuel pour attirer l’attention et identifier les dangers possibles. En présence de l’un de ces symboles, prendre garde et suivre les instructions afférentes pour éviter tout risque. Les instructions en matière de sécurité indiquées ci-dessous ne constituent qu’un sommaire des instructions de sécurité plus complètes fournies dans les normes de sécurité énumérées dans la Section 2-5. Lire et observer toutes les normes de sécurité.

Seul un personnel qualifié est autorisé à installer, faire fonctionner, entretenir et réparer cet appareil.

Pendant le fonctionnement, maintenir à distance toutes les personnes, notamment les enfants de l’appareil.

UNE DÉCHARGE ÉLECTRIQUE peut entraîner la mort.

Le contact d’organes électriques sous tension peut provoquer des accidents mortels ou des brûlures graves. Le circuit de l’électrode et de la pièce est sous tension lorsqu’il est délivré à la sortie. Le circuit d’alimentation et les circuits internes de la machine sont également sous tension lorsque l’alimentation est sur Marche. Dans le mode de soudage avec le fil, le dérouleur, le bloc de commande du rouleau et toutes les parties métalliques en contact avec le fil sont sous tension électrique. Un équipement installé ou mis à la terre de manière incorrecte ou impropre constitue un danger.

- Ne pas toucher aux pièces électriques sous tension.
- Porter des gants isolants et des vêtements de protection secs et sans trous.
- S’isoler de la pièce à couper et du sol en utilisant des housses ou des tapies assez grands afin d’éviter tout contact physique avec la pièce à couper ou le sol.
- Ne pas se servir de source électrique à courant électrique UNIQUEMENT si le procédé de soudage le demande.
- Si l’utilisation d’une source électrique à courant électrique s’avère nécessaire, se servir de la fonction de télécommande si l’appareil en est équipé.
- D’autres consignes de sécurité sont nécessaires dans les conditions suivantes : risques électriques dans un environnement humide ou si l’on porte des vêtements mouillés ; sur des structures métalliques telles que sols, grilles ou échauffadages ; en position coïncée comme assise, à genoux ou couchée ; ou s’il y a un risque élevé de contact inévitable ou accidentel avec la pièce à souder ou le sol. Dans ces conditions, utiliser les équipements suivants, dans l’ordre indiqué : 1) un poste à souder DC à tension variable (à fil), 2) un poste à souder DC manuel (électrode) ou 3) un poste à souder AC à tension à vide réduite. Dans la plupart des situations, l’utilisation d’un poste à souder DC à fil à tension constante est recommandée. En outre, ne pas travailler seul !

- Toujours vérifier la terre du cordon d’alimentation. Vérifier si, dans le mode de soudage avec le fil, le dérouleur, le bloc de commande du rouleau et toutes les parties métalliques en contact avec le fil sont sous tension électrique. Un équipement installé ou mis à la terre de manière incorrecte ou impropre constitue un danger.

- Éviter que le cordon de terre de l’appareil touche à la terre ou une électrode provenant d’une autre machine.

- Ne pas toucher l’électrode quand on est en contact avec la pièce à souder ou une électrode provenant d’une autre machine.

- Ne pas toucher des porte électrodes connectés à deux machines en même temps à cause de la présence d’une tension à vide doublée.

- Ne pas raccorder plus d’une électrode ou plus d’un câble de masse à une même borne de sortie de soudage. Débrancher le câble de la pièce soudée ou mettre la pièce à la terre.

- Ne pas raccorder d’un câble d’alimentation de plus une électrode ou plus un câble de masse à une même borne de sortie de soudage. Débrancher le câble de la pièce soudée ou mettre la pièce à la terre.

- Ne pas enrouler les câbles autour du corps.

- Si la pièce soudée doit être mise à la terre, le faire directement avec un câble distinct.

- Ne pas passer sous une pièce endommagée. Entretenir l’appareil conforme à ce manuel.

- Porter un harnais de sécurité si l’on doit travailler au-dessus du sol.

- S’assurer que tous les panneaux et couvercles sont correctement en place.

- Fixer le câble de retour de façon à obtenir un bon contact métal-métal avec la pièce à souder ou la table de travail, le plus près possible de la soudure.

- Isoler la pince de masse quand pas mis à la pièce pour éviter le contact avec tout objet métallique.

- Ne pas raccorder plus d’une électrode ou plus d’un câble de masse à une même borne de sortie de soudage. Débrancher le câble pour le procédé non utilisé.

- Utiliser une protection différentielle lors de l’utilisation d’un équipement auxiliaire dans des endroits humides ou mouillés.

Il reste une TENSION DC NON NÉGLIGEABLE dans les sources de soudage ondulées UNE FOIS l’alimentation coupée.

- Arrêter les convertisseurs, débrancher le courant électrique et décharger les condensateurs d’alimentation selon les instructions indiquées dans la partie Entretien avant de toucher les pièces.
LES PIÈCES CHAUDES peuvent provoquer des brûlures.
- Ne pas toucher à mains nues les parties chaudes.
- Prévoir une période de refroidissement avant de travailler à l’équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recommandés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

LES FUMÉES ET LES GAZ peuvent être dangereux.
- Eloigner votre tête des fumées. Ne pas respirer les fumées.
- À l’intérieur, ventiler la zone et/ou utiliser une ventilation forcée au niveau de l’arc pour l’évacuation des fumées et des gaz de soudage. Pour déterminer la bonne ventilation, il est recommandé de procéder à un prélèvement pour la composition et la quantité de fumées et de gaz auxquels est exposé le personnel.
- Si la ventilation est médiocre, porter un respirateur anti-vapeurs approuvé.
- Lire et comprendre les fiches de données de sécurité et les instructions du fabricant concernant les adhésifs, les revêtements, les nettoyants, les consommables, les produits de refroidissement, les dégraissateurs, les flux et les métaux.
- Travailler dans un espace fermé seulement s’il est bien ventilé ou en portant un respirateur à alimentation d’air. Demander toujours à un surveillant dûment formé de se tenir à proximité. Des fumées et des gaz de soudage peuvent déplacer l’air et abaisser le niveau d’oxygène provoquant des blessures ou des accidents mortels. S’assurer que l’air de respiration ne présente aucun danger.
- Ne pas souder dans des endroits situés à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent réagir en présence de vapeurs et formes des gaz hautement toxiques et irritants.
- Ne pas souder des métaux munis d’un revêtement, tels que l’acier galvanisé, plaqué en plomb ou au cadmium à moins que le revêtement soit bien ventilé, et en portant un respirateur à alimentation d’air. Les revêtements et tous les métaux renfermant ces éléments peuvent dégager des fumées toxiques en cas de soudage.

LES RAYONS DE L’ARC peuvent provoquer des brûlures dans les yeux et sur la peau.
- Le rayonnement de l’arc du procédé de soudage génère des rayons visibles et invisibles intensifs (ultraviolets et infrarouges) susceptibles de provoquer des brûlures dans les yeux et sur la peau. Des étielles sont projetées pendant le soudage.
- Porter un casque de soudage approuvé muni de verres filtrants appropriés pour protéger visage et yeux pour protéger votre visage et vos yeux pendant le soudage et pour regarder (voir ANSI Z49.1 et Z87.1 énuméré dans les normes de sécurité).
- Porter des lunettes de sécurité avec écrans latéraux ou un écran facial.
- Avoir recours à des écrans protecteurs ou à des rideaux pour protéger les autres contre les rayonnements les éboulements et les étielles ; prévenir toute personne sur les lieux de ne pas regarder l’arc.
- Porter un équipement de protection pour le corps fait d’un matériau résistant et ignifuge (cuir, coton robuste, laine). La protection du corps comporte des vêtements sans huile comme par ex. des gants de cuir, une chemise solide, des pantalons sans revers, des chaussures hautes et une casquette.

LE SOUDAGE peut provoquer un incendie ou une explosion.
- Le soudage effectué sur des conteneurs fermés tels que des réservoirs, tambours ou des conduites peut provoquer leur éclatement. Des étielles peuvent être projetées de l’arc de soudure. La projection d’étielles, des pièces chaudes et des équipements chauds peut provoquer des incendies et des brûlures. Le contact accidentel de l’électrode avec des objets métailliques peut provoquer des étielles, une explosion, un surchauffement ou un incendie. Avant de commencer le soudage, vérifier et s’assurer que l’endroit ne présente pas de danger.
- Déplacer toutes les substances inflammables à une distance de 10,7 m de l’arc de soudage. En cas d’impossibilité les recouvrir soigneusement avec des protections homologuées.
- Ne pas souder dans un endroit là où des étielles peuvent tomber sur des substances inflammables.
- Se protéger et d’autres personnes de la projection d’étielles et de métal chaud.
- Des étielles et des matériaux chauds du soudage peuvent facilement passer dans d’autres zones en traversant de petites fissures et des ouvertures.
- Surveiller tout déclenchement d’incendie et tenir un extincte à proximité.
- Le soudage effectué sur un plafond, plancher, paroi ou séparation peut déclencher un incendie de l’autre côté.
- Ne pas effectuer le soudage sur des conteneurs fermés tels que des réservoirs, tambours, ou conduites, à moins qu’ils n’aient été préparés correctement conformément à AWS F4.1 et AWS A6.0 (voir les Normes de Sécurité). Ne pas souder là où l’air ambiant pourrait contenir des poussières, gaz ou émanations inflammables (vapeur d’essence, par exemple).
- Brancher le câble de masse sur la pièce le plus près possible de la zone de soudage pour éviter le transport du courant sur une longue distance par des chemins inconnus éventuels en provoquant les risques d’électrocution, d’étielles et d’incendie.
- Ne pas utiliser le poste de soudage pour dégeler des conduites gelées.
- En cas de non utilisation, enlever la baguette d’électrode du porte-électrode ou couper le fil à la pointe de contact.
- Porter un équipement de protection pour le corps fait d’un matériau résistant et ignifuge (cuir, coton robuste, laine). La protection du corps comporte des vêtements sans huile comme par ex. des gants de cuir, une chemise solide, des pantalons sans revers, des chaussures hautes et une casquette.
- Avant de souder, retirer toute substance combustible de vos poches telles qu’un allumette ou des allumettes.
- Une fois le travail achevé, assurez-vous qu’il ne reste aucune trace d’étielles incandescentes ni de flammes.
- Utiliser exclusivement des fusibles ou coupe-circuits appropriés. Ne pas augmenter leur puissance ; ne pas les porter.
- Suivre les recommandations dans OSHA 1910.252(a)(2)(v) et NFPA 51B pour les travaux à chaud et avoir de la surveillance et un extincteur à proximité.
- Lire et comprendre les fiches de données de sécurité et les instructions du fabricant concernant les adhésifs, les revêtements, les nettoyants, les consommables, les produits de refroidissement, les dégraissateurs, les flux et les métaux.

DES PIECES DE METAL ou DES SALETES peuvent provoquer des blessures dans les yeux.
- Le soudage, l’écaillage, le passage de la pièce à la brosse en fil de fer, et le meulage génèrent des étielles et des particules métalliques volatiles. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Porter des lunettes de sécurité avec écrans latéraux ou un écran facial.

LES ACCUMULATIONS DE GAZ risquent de provoquer des blessures ou même la mort.
- Fermer l’alimentation du gaz comprimé en cas de non utilisation.
- Veiller toujours à bien aérer les espaces confinés ou se servir d’un respirateur d’adduction d’air homologué.

Les CHAMPS ÉLECTROMAGNETIQUES (CEM) peuvent affecter les implants médicaux.
- Les porteurs de stimulateurs cardiaques et autres implants médicaux doivent rester à distance.
- Les porteurs d’implants médicaux doivent consulter leur médecin et le fabricant du dispositif avant de s’approcher de la zone où se déroule le soudage à l’arc, du soudage par points, du gougeage, de la découpe plasma ou une opération de chauffage par induction.
LE BRUIT peut endommager l’ouïe.
Le bruit des processus et des équipements peut affecter l’ouïe.
- Porter des protections approuvées pour les oreilles si le niveau sonore est trop élevé.

LES BOUTEILLES peuvent exploser si elles sont endommagées.
Les bouteilles de gaz comprimé contiennent du gaz sous haute pression. Si une bouteille est endommagée, elle peut exploser. Du fait que les bouteilles de gaz font normalement partie du procédé de soudage, les manipuler avec précaution.
- Protéger les bouteilles de gaz comprimé d’une chaleur excessive, des chocs mécaniques, des dommages physiques, du laitier, des flammes ouvertes, des étincelles et des arcs.
- Placer les bouteilles debout en les fixant dans un support stationnaire ou dans un porte-bouteilles pour les empêcher de tomber ou de se renverser.

2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance

Risque D’INCENDIE OU D’EXPLOSION.
- Ne pas placer l’appareil sur, au-dessus ou à proximité de surfaces inflammables.
- Ne pas installer l’appareil à proximité de produits inflammables.
- Ne pas surcharger l’installation électrique.

LA CHUTE DE L’ÉQUIPEMENT peut provoquer des blessures.
- Utiliser l’anneau de levage uniquement pour soulever l’appareil, NON PAS les chariots, les bouteilles de gaz ou tout autre accessoire.
- Utiliser un équipement de levage de capacité suffisante pour lever l’appareil.
- En utilisant des fourches de levage pour déplacer l’unité, s’assurer que les fourches sont suffisamment longues pour dépasser du côté opposé de l’appareil.
- Tenir l’équipement (câbles et cordons) à distance des véhicules mobiles lors de toute opération en hauteur.
- Suivre les consignes du Manuel des applications pour l’équation mobiles lors de toute opération en hauteur.

L’EMPLOI EXCESSIF peut surchauffer l’équipement.
- Prévoir une période de refroidissement ; respecter le cycle opératoire nominal.
- Réduire le courant ou le facteur de marche avant de poursuivre le soudage.
- Ne pas obstruer les passages d’air du poste.

LES ÉTINCELLES PROJETÉES peuvent provoquer des blessures.
- Porter un écran facial pour protéger le visage et les yeux.
- Afloter l’électrode au tungstène uniquement à la meuleuse dotée de protecteurs. Cette manœuvre est à exécuter dans un endroit sûr lorsque l’on porte l’équipement homologué de protection du visage, des mains et du corps.
- Les étincelles risquent de causer un incendie – éloigner toute substance inflammable.

LES CHARGES ÉLECTROSTATIQUES peuvent endommager les circuits imprimés.
- Établir la connexion avec la barrette de terre avant de manipuler des cartes ou des pièces.
- Tenir les bouteilles éloignées des circuits de soudage ou autres circuits électriques.
- Ne jamais placer une torche de soudage sur une bouteille à gaz.
- Une électrode de soudage ne doit jamais entrer en contact avec une bouteille.
- Ne jamais souder une bouteille pressurisée – risque d’explosion.
- Utiliser seulement des bouteilles de gaz comprimé, régulateurs, tuyaux et raccords convenables pour cette application spécifique ; les maintenir ainsi que les éléments associés en bon état.
- Tourner le dos à la sortie de vanne lors de l’ouverture de la vanne de la bouteille. Ne pas se tenir devant ou derrière le régulateur lors de l’ouverture de la vanne.
- Le couvercle du détendeur doit toujours être en place, sauf lorsque la bouteille est utilisée ou qu’elle est reliée pour usage ultérieur.
- Utiliser les équipements corrects, les bonnes procédures et suffisamment de personnes pour soulever et déplacer les bouteilles.
- Lire et suivre les instructions sur les bouteilles de gaz comprimé, l’équipement connexe et le dépliant P-1 de la CGA (Compressed Gas Association) mentionné dans les principales normes de sécurité.

Risques possibles :
- Ne pas appuyer sur la gâchette avant d’en avoir reçu l’instruction.
- Ne pas diriger le pistolet vers soi, d’autres personnes ou toute pièce mécanique en engageant le fil de soudage.

Les PIÈCES MOBILES peuvent causer des blessures.
- Ne pas s’approcher des organes mobiles.
- Ne pas s’approcher des points de coinement tels que des rouleaux de commande.

Les PIÈCES MOBILES peuvent causer des blessures.
- S’abstenir de toucher des organes mobiles tels que des ventilateurs.
- Maintenir fermés et verrouillés les portes, panneaux, recouvrements et dispositifs de protection.
- Lorsque cela est nécessaire pour des travaux d’entretien et de dépannage, faire retirer les portes, panneaux, recouvrements ou dispositifs de protection uniquement par du personnel qualifié.
- Remettre les portes, panneaux, recouvrements ou dispositifs de protection quand l’entretien est terminé et avant de rebrancher l’alimentation électrique.

LIRE LES INSTRUCTIONS.
- Lire et appliquer les instructions sur les étiquettes et le Mode d’emploi avant l’installation, l’utilisation ou l’entretien de l’appareil.
- Lire les informations de sécurité au début du manuel et dans chaque section.
- N’utiliser que les pièces de rechange recommandées par le constructeur.
- Effectuer l’installation, l’entretien et toute intervention selon les manuels d’utilisateurs, les normes nationales, provinciales et de l’industrie, ainsi que les codes municipaux.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d'un côté et à distance de l'opérateur.
3. Ne pas courir et ne pas contourner les câbles autour de votre corps.
4. Maintenir la tête et le torse loin que possible du matériel du circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la soudure.
6. Ne pas travailler à proximité d'une source de soudage, ni s'asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le dévidoir.

En ce qui concerne les implants médicaux :
Les porteurs d'implants médicaux doivent d'abord consulter leur médecin avant de s'approcher des opérations de soudage à l'arc, de soudage par points, de gougeage, du découpage plasma ou de chauffage par induction. Si le médecin approuve, il est recommandé de suivre les procédures précédentes.

2.6. Informations relatives aux CEM
Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits. Le courant issu d'un soudage à l'arc (et de procédés connexes, y compris le soudage par points, le gougeage, le découpage plasma et les opérations de chauffage par induction) crée un champ électromagnétique (CEM) autour du circuit de soudage. Les champs électromagnétiques produits peuvent causer interférence à certains implants médicaux, p. ex. les stimulateurs cardiaques. Des mesures de protection pour les porteurs d'implants médicaux doivent être prises: Limiter par exemple tout accès aux passants ou procéder à une évaluation des risques individuels pour les sourdeurs. Tous les sourdeurs doivent appliquer les procédures suivantes pour minimiser l'exposition aux CEM provenant du circuit de soudage:

1. Rassembler les câbles en les torsadant ou en les attachant avec du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d'un côté et à distance de l'opérateur.

Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits.

2.5. Principales normes de sécurité

2-4. Proposition californienne 65 Avertissements
Les équipements de soudage et de coupage produisent des fumées et des gaz qui contiennent des produits chimiques dont l'État de Californie reconnaît qu'ils provoquent des malformations congénitales et, dans certains cas, des cancers. (Code de santé et de sécurité de Californie, chapitre 25249.5 et suivants)

Ce produit contient des produits chimiques, notamment du plomb, dont l'État de Californie reconnaît qu'ils provoquent des cancers, des malformations congénitales ou d'autres problèmes de procréation. Se laver les mains après utilisation.

2.6. Informations relatives aux CEM
Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits. Le courant issu d'un soudage à l'arc (et de procédés connexes, y compris le soudage par points, le gougeage, le découpage plasma et les opérations de chauffage par induction) crée un champ électromagnétique (CEM) autour du circuit de soudage. Les champs électromagnétiques produits peuvent causer interférence à certains implants médicaux, p. ex. les stimulateurs cardiaques. Des mesures de protection pour les porteurs d'implants médicaux doivent être prises: Limiter par exemple tout accès aux passants ou procéder à une évaluation des risques individuels pour les sourdeurs. Tous les sourdeurs doivent appliquer les procédures suivantes pour minimiser l'exposition aux CEM provenant du circuit de soudage:

1. Rassembler les câbles en les torsadant ou en les attachant avec du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d'un côté et à distance de l'opérateur.
3. Ne pas courir et ne pas contourner les câbles autour de votre corps.
4. Maintenir la tête et le torse loin que possible du matériel du circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la soudure.
6. Ne pas travailler à proximité d'une source de soudage, ni s'asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le dévidoir.

En ce qui concerne les implants médicaux :
Les porteurs d'implants médicaux doivent d'abord consulter leur médecin avant de s'approcher des opérations de soudage à l'arc, de soudage par points, de gougeage, du découpage plasma ou de chauffage par induction. Si le médecin approuve, il est recommandé de suivre les procédures précédentes.
SECTION 3 – DEFINITIONS

3-1. Additional Safety Symbols And Definitions

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning! Watch Out! There are possible hazards as shown by the symbols.</td>
</tr>
<tr>
<td></td>
<td>Drive rolls can injure fingers. Welding wire and drive parts are at welding voltage during operation – keep hands and metal objects away.</td>
</tr>
<tr>
<td></td>
<td>Beware of electric shock from wiring.</td>
</tr>
<tr>
<td></td>
<td>When power is applied failed parts can explode or cause other parts to explode.</td>
</tr>
<tr>
<td></td>
<td>Become trained and read the instructions before working on the machine or welding.</td>
</tr>
<tr>
<td></td>
<td>Hazardous voltage remains on input capacitors after power is turned off. Do not touch fully charged capacitors. Always wait 5 minutes after power is turned off before working on unit, OR check input capacitor voltage, and be sure it is near 0 before touching any parts.</td>
</tr>
</tbody>
</table>

Notes
3-2. Miscellaneous Symbols And Definitions

<table>
<thead>
<tr>
<th>A</th>
<th>Amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>U_0</td>
<td>Rated No Load Voltage (OCV)</td>
</tr>
<tr>
<td>----</td>
<td>Direct Current (DC)</td>
</tr>
<tr>
<td>~</td>
<td>Alternating Current (AC)</td>
</tr>
<tr>
<td>U_1</td>
<td>Primary Voltage</td>
</tr>
<tr>
<td>U_2</td>
<td>Conventional Load Voltage</td>
</tr>
<tr>
<td>I_2</td>
<td>Rated Welding Current</td>
</tr>
<tr>
<td>V</td>
<td>Input Power Or Input Voltage</td>
</tr>
<tr>
<td>I</td>
<td>Gas Input</td>
</tr>
<tr>
<td>IP</td>
<td>Internal Protection Rating</td>
</tr>
<tr>
<td>1~</td>
<td>Single Phase</td>
</tr>
<tr>
<td>1</td>
<td>Unlocked</td>
</tr>
<tr>
<td>3</td>
<td>Locked</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Duty Cycle</td>
</tr>
<tr>
<td>Increase</td>
</tr>
<tr>
<td>Hz</td>
</tr>
<tr>
<td>Increase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Suitable for Some Hazardous Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
</tbody>
</table>

| Gas Tungsten Arc Welding (GTAW) Torch |
| Shielded Metal Arc Welding (SMAW) |
| Shielded Metal Arc Welding (SMAW) Electrode Holder |
| Gas Metal Arc Welding (GMAW) |
| Gas Metal Arc Welding (GMAW) MIG / Gun Control |
| Self-Shielded Flux Cored Arc Welding (FCAW) |
| Wire Feed Spool Gun |
| Gas Tungsten Arc Welding (GTAW) / Tungsten Inert Gas (TIG) Welding |
| Gas Postflow |
| Gas Preflow |
| Cold Jog (Inch) Toward Workpiece |

Notes
4-1. Serial Number And Rating Label Location

The serial number and rating information for this product is located on the back of unit. Use rating label to determine input power requirements and/or rated output. For future reference, write serial number in space provided on back cover of this manual.

4-2. Unit Specifications For MIG (GMAW)

Do not use information in unit specifications table to determine electrical service requirements. See Sections 5-3, 5-5, and 5-6 for information on connecting input power.

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output, 50/60 Hz, Single-Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VAC</td>
<td>110 A @ 19.5 Volts DC 60% Duty Cycle</td>
<td>30 – 125</td>
<td>58</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>Wire Type And Dia</td>
<td>Solid/Stainless Flux Cored</td>
<td>Wire Feed Speed Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.023 - .035 in. (0.6 - 0.8 mm)</td>
<td>.030 - .035 in. (0.8 - 0.9 mm)</td>
<td>60 – 600 IPM (1.5 – 15.2 m/min)</td>
<td></td>
</tr>
<tr>
<td>240 VAC</td>
<td>200 A @ 24.0 Volts DC 20% Duty Cycle</td>
<td>30 – 230</td>
<td>58</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>150 A @ 21.5 Volts DC 40% Duty Cycle*</td>
<td></td>
<td></td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Wire Type And Dia</td>
<td>Solid/Stainless Flux Cored</td>
<td>Wire Feed Speed Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.023 – .035 in. (0.6 – 0.9 mm)</td>
<td>.030 – .045 in. (0.8 – 1.2 mm)</td>
<td>60 – 600 IPM (1.5 – 15.2 m/min)</td>
<td></td>
</tr>
</tbody>
</table>

4-3. Unit Specifications For TIG (GTAW)

Do not use information in unit specifications table to determine electrical service requirements. See Sections 5-3, 5-5, and 5-6 for information on connecting input power.

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output, 50/60 Hz, Single-Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VAC</td>
<td>140 A @ 15.6 Volts DC 40% Duty Cycle</td>
<td>20 – 150</td>
<td>58</td>
<td>24.6</td>
</tr>
<tr>
<td>240 VAC</td>
<td>190 A @ 17.6 Volts DC 20% Duty Cycle</td>
<td>20 – 210</td>
<td>58</td>
<td>18.0</td>
</tr>
</tbody>
</table>

4-4. Unit Specifications For Stick (SMAW)

Do not use information in unit specifications table to determine electrical service requirements. See Sections 5-3, 5-5, and 5-6 for information on connecting input power.

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output, 50/60 Hz, Single-Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VAC</td>
<td>90 A @ 23.6 Volts DC 40% Duty Cycle</td>
<td>30 – 100</td>
<td>58</td>
<td>22.7</td>
</tr>
<tr>
<td>240 VAC</td>
<td>190 A @ 27.6 Volts DC 20% Duty Cycle</td>
<td>30 – 200</td>
<td>58</td>
<td>27.0</td>
</tr>
</tbody>
</table>

4-5. Environmental Specifications

A. IP Rating

<table>
<thead>
<tr>
<th>IP Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP21</td>
</tr>
</tbody>
</table>

This equipment is designed for indoor use and is not intended to be used or stored outside.
4-6. Dimensions And Weight

Weight
38 lb (17.2 kg)

Notes

Work like a Pro!
Pros weld and cut safely. Read the safety rules at the beginning of this manual.
4-7. Duty Cycle And Overheating For MIG (GMAW)

Duty Cycle is percentage of 10 minutes that unit can weld at rated load without overheating. If unit overheats, output stops. Wait fifteen minutes for unit to cool. Reduce amperage or duty cycle before starting to weld again.

NOTICE – Exceeding duty cycle can damage unit and void warranty.

<table>
<thead>
<tr>
<th>Duty Cycle</th>
<th>120V 20A</th>
<th>120V 15A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Amperes</td>
<td>240V</td>
<td>120V</td>
</tr>
<tr>
<td>% Duty Cycle</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

- **120V Input**
 - 60% Duty Cycle At 110A
 - 6 Minutes Welding
 - 4 Minutes Resting

- **240V Input**
 - 20% Duty Cycle At 200A
 - 2 Minutes Welding
 - 8 Minutes Resting
 - 40% Duty Cycle At 150A
 - 4 Minutes Welding
 - 6 Minutes Resting

Overheating

- Reduce Duty Cycle
- Wait 15 minutes

duty1 4:95 – Ref. Duty Cycle Charts
Duty Cycle is percentage of 10 minutes that unit can weld at rated load without overheating.

If unit overheats, output stops. Wait fifteen minutes for unit to cool. Reduce amperage or duty cycle before starting to weld again.

NOTICE – Exceeding duty cycle can damage unit and void warranty.

4-8. Duty Cycle And Overheating For TIG (GTAW)

120V Input

40% Duty Cycle At 140A

- 4 Minutes Welding
- 6 Minutes Resting

240V Input

20% Duty Cycle At 190A

- 2 Minutes Welding
- 8 Minutes Resting

Overheating

- Wait 15 minutes
- Reduce Duty Cycle
- A or V
4-9. Duty Cycle And Overheating For Stick (SMAW)

Duty Cycle is percentage of 10 minutes that unit can weld at rated load without overheating.

If unit overheats, output stops. Wait fifteen minutes for unit to cool. Reduce amperage or duty cycle before starting to weld again.

NOTICE – Exceeding duty cycle can damage unit and void warranty.

- **Overheating**

 1. **20% Duty Cycle At 190A**
 2. **4 Minutes Welding**
 3. **8 Minutes Resting**

 OR

 1. **Reduce Duty Cycle**

- **40% Duty Cycle At 90A**
 1. **4 Minutes Welding**
 2. **6 Minutes Resting**

 OR

 1. **Reduce Duty Cycle**
5-1. Selecting A Location

Movement

\[\text{\textbf{Do not move or operate unit where it could tip.}} \]

Location And Airflow

\[\text{\textbf{Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.}} \]

1. Lifting Handles
 Use handles to lift unit.
2. Line Disconnect Device
 Locate unit near correct input power supply.

\[\text{18 in. (460 mm)} \]

\[\text{18 in. (460 mm)} \]
5-2. Multi−Voltage Plug (MVP) Connection

Selecting Plug

1. Power Cord Connector From Welding Power Source
 - Select plug for power supply receptacle available at site. Not all plugs shown are provided as standard with unit.
2. Plug – NEMA Type 5−15P
3. Receptacle – NEMA Type 5−15R
 - (Customer Supplied)
4. Plug – NEMA Type 5−20P (Optional)
5. Receptacle – NEMA Type 5−20R
 - (Customer Supplied)
6. Plug – NEMA Type 6−50P
7. Receptacle – NEMA Type 6−50R
 - (Customer Supplied)

Connecting Plug To Power Cord

- Align arrow on plug with arrow on power cord connector. Push together.
- Tighten threaded collar. As threaded collar is tightened, push plug onto adapter until collar is completely tight.
- Connect plug to receptacle.

Warning: Do not cut off power cord connector and rewire. The power cord connector and plugs will work with standard NEMA receptacles. Modifying power cord, connector, and plugs will void product warranty.

Follow electrical service guide for 240 VAC in Section 5-3. Do not use plug rating to size branch circuit protection.
5-3. Electrical Service Guide

Avoid failure to follow these electrical service guide recommendations could create an electric shock or fire hazard. These recommendations are for a dedicated circuit sized for the rated output and duty cycle of the welding power source. In dedicated circuit installations, the National Electrical Code (NEC) allows the receptacle or conductor rating to be less than the rating of the circuit protection device. All components of the circuit must be physically compatible. See NEC articles 210.21, 630.11, and 630.12.

\[\text{Actual input voltage should not exceed} \pm 10\% \text{ of indicated required input voltage. If actual input voltage is outside of this range, output may not be available.} \]

<table>
<thead>
<tr>
<th>Input Voltage (V)</th>
<th>50/60 Hz 240 Single Phase</th>
<th>50/60 Hz 120 Volts AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240</td>
<td>15 or 20 ampere</td>
</tr>
<tr>
<td>Input Amperes (A) At Rated Output</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>Max Recommended Standard Fuse Rating In Amperes (^1)</td>
<td>35</td>
<td>A 15 or 20 ampere individual branch circuit protected by time-delay fuses or circuit breaker is required.</td>
</tr>
<tr>
<td>Time-Delay Fuses (^2)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Normal Operating Fuses (^3)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Min Input Conductor Size In AWG (^4)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Max Recommended Input Conductor Length In Feet (Meters)</td>
<td>51 (16)</td>
<td>See Section 5-5</td>
</tr>
<tr>
<td>Min Grounding Conductor Size In AWG (^4)</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Reference: 2014 National Electrical Code (NEC) (including article 630)

1. If a circuit breaker is used in place of a fuse, choose a circuit breaker with time-current curves comparable to the recommended fuse.
2. “Time-Delay” fuses are UL class “RK5”. See UL 248.
3. “Normal Operating” (general purpose - no intentional delay) fuses are UL class “K5” (up to and including 60 amps), and UL class “H” (65 amps and above).
4. Conductor data in this section specifies conductor size (excluding flexible cord or cable) between the panelboard and the equipment per NEC Table 310.15(B)(16). If a flexible cord or cable is used, minimum conductor size may increase. See NEC Table 400.5(A) for flexible cord and cable requirements.

5-4. Extension Cord Data

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Input Power Phase</th>
<th>Hertz</th>
<th>Conductor Size</th>
<th>Max. Cord Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 V</td>
<td>1</td>
<td>50/60</td>
<td>14 AWG</td>
<td>24 ft (7 m)</td>
</tr>
<tr>
<td>240 V</td>
<td>1</td>
<td>50/60</td>
<td>14 AWG</td>
<td>51 ft (16 m)</td>
</tr>
</tbody>
</table>

Notes

\[\text{Work like a Pro!} \]

Pros weld and cut safely. Read the safety rules at the beginning of this manual.
5-5. Connecting 120 Volt Input Power

Installation must meet all National and Local Codes – have only qualified persons make this installation.

Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.

NOTICE – The Auto-Line circuitry in this unit automatically links the power source to the primary voltage being applied, either 120 or 240 VAC.

See rating label on unit and check input voltage available at site.

For 120 volts AC input power, a 15 or 20 ampere individual branch circuit protected by time-delay fuses or circuit breaker is required.

1 Multi-Voltage Plug And Power Cord Connector (NEMA Type 5–15P Plug Shown)

For multi-voltage plug connections, see Section 5-2.

1 Plug From Unit
2 Receptacle – NEMA Type 5–15R (Customer Supplied)
5-6. Connecting 1-Phase Input Power For 240 VAC

Tools Needed:

- [Diagram of welding equipment and electrical connections]
5-6. Connecting 1-Phase Input Power For 240 VAC (Continued)

⚠️ Installation must meet all National and Local Codes – have only qualified persons make this installation.

⚠️ Disconnect and lockout/tagout input power before connecting input conductors from unit. Follow established procedures regarding the installation and removal of lockout/tagout devices.

⚠️ Always connect green or green/yellow conductor to supply grounding terminal first, and never to a line terminal.

NOTICE – The Auto-Line circuitry in this unit automatically links the power source to the primary voltage being applied, either 120 or 240 VAC.

See rating label on unit and check input voltage available at site.

1 Input Power Cord
2 Disconnect Device (switch shown in the OFF position)
3 Disconnect Device Grounding Terminal
4 Disconnect Device Line Terminals
5 Black And White Input Conductor (L1 And L2)
6 Green Or Green/Yellow Grounding Conductor

Connect green or green/yellow grounding conductor to disconnect device grounding terminal first.

Connect input conductors L1 and L2 to disconnect device line terminals.

7 Over-Current Protection
Select type and size of over-current protection using Section 5-3 (fused disconnect switch shown).

8 Receptacle (NEMA 6-50R)
Customer Supplied

Close and secure door on disconnect device. Remove lockout/tagout device, and place switch in the On position.

Notes

Work like a Pro!
Pros weld and cut safely. Read the safety rules at the beginning of this manual.
5-7. Stick Welding Connections

⚠️ Turn off unit and disconnect input power before making connections.

1 Positive Weld Output Receptacle
2 Negative Weld Output Receptacle
3 Stick Electrode Holder And Cable
4 Work Clamp And Cable

Connect stick electrode holder cable to the positive weld output receptacle, and connect work clamp to negative weld output receptacle.

Ensure all connections are tight.
5-8. TIG Welding Connections DCEN (Direct Current Electrode Negative)

| Diagram of TIG welding connections |

- **Turn off unit and disconnect input power before making connections.**
- **Positive Weld Output Receptacle**
- **Negative Weld Output Receptacle**
- **TIG Torch And Cable**
- **Work Clamp And Cable**

Connect TIG torch cable to the negative weld output receptacle and connect work cable to positive weld output receptacle.

Ensure all connections are tight.

- **Foot Control**
- **Finger Tip Control**
- **Remote Control Cable**
- **Remote Control Receptacle**

Route control cable through MIG gun hole.

Connect foot control or finger tip control to remote control receptacle.

- **TIG Shielding Gas Connection**

Use Argon gas for TIG welding (see Section 5-12).
5-9. Process/Polarity Table

<table>
<thead>
<tr>
<th>Process</th>
<th>Polarity</th>
<th>Cable Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW – Solid wire with shielding gas</td>
<td>DCEP – Reverse polarity</td>
<td>Connect to positive (+) output receptacle</td>
</tr>
<tr>
<td>FCAW – Self-shielding wire – no shielding gas</td>
<td>DCEN – Straight Polarity</td>
<td>Connect to negative (−) output receptacle</td>
</tr>
</tbody>
</table>

5-10. MIG Welding Connections

1 Positive Weld Output Receptacle
2 Negative Weld Output Receptacle
3 Wire Drive Assembly Cable
4 Work Clamp And Cable
5 Gun End
6 Trigger Control Cable
7 Four Pin Trigger Control Cable Receptacle
8 MIG Shielding Gas Connection

🔥 Turn off unit and disconnect input power before making connections.

Ensure all connections are tight.

Connect gun end to drive assembly (see Section 5-11).

Route trigger control cable through MIG gun hole.

Connect plug on end of cable to four pin receptacle inside unit.

Use 75/25 mix or CO₂ shielding gas for solid wire. Use Argon shielding gas for aluminum wire with spool gun (see Section 5-12).
5-11. MIG Gun Connection Inside Unit

1. Gun Securing Knob
2. Gun Block
3. Gun Outlet Wire Guide
4. Gun End
5. Trigger Control Cable
6. Four Pin Trigger Control Cable Receptacle

Loosen knob. **Insert end of gun through opening in front panel until gun end bottoms against gun block.** Tighten knob.

Route trigger control cable through MIG gun hole. Connect plug on end of cable to four pin receptacle inside unit.

Be sure that gun end is tight against drive assembly.

Correct

Incorrect

Ref. 275167A

Ref. 267807A

Ref. 267807A
5-12. Connecting Shielding Gas Supply

Obtain gas cylinder and chain to running gear, wall, or other stationary support so cylinder cannot fall and break off valve.

1. Cap
2. Cylinder Valve
 Remove cap, stand to side of valve, and open valve slightly. Gas flow blows dust and dirt from valve. Close valve.
3. Cylinder
4. Regulator/Flowmeter
 Install so face is vertical.
5. Regulator/Flowmeter Gas Hose Connection
6. Welding Power Source CO₂ And Mixed Gas Hose Connection
7. Welding Power Source Argon Gas Hose Connection
 Connect gas hose between regulator/flowmeter gas hose connection, and the appropriate fitting for the gas type on rear of welding power source.
8. Flow Adjust
 Typical flow rate for CO₂ shielding gas and MIG (GMAW) welding is 15 to 30 CFH (cubic feet per hour) and mixed gas is 25 to 45 CFH.
 Typical flow rate for Argon shielding gas and TIG (GTAW) welding is 15 to 25 CFH and aluminum MIG (GMAW) welding is 35 to 45 CFH.
 Check wire manufacturer’s recommended flow rate.
9. CO₂ Adapter (Customer Supplied)
10. O-Ring (Customer Supplied)
 Install adapter with O-ring between regulator/flowmeter and CO₂ cylinder.

Tools Needed:

Ref. 804 654-A / 275168A
5-13. Installing Wire Spool And Adjusting Hub Tension

Tools Needed:

1 Wire Spool
2 Retaining Nut – For 8 in. (203 mm) Spool Only

Installing 4 in. (102 mm) Wire Spool

When a slight force is needed to turn spool, tension is set.

Installing 8 in. (203 mm) Wire Spool

When a slight force is needed to turn spool, tension is set.

Align locking hole in spool with locking pin on spool hub.

Adapter and retaining ring
5-14. Threading Welding Wire

1 Wire Spool
2 Welding Wire
3 Inlet Wire Guide
4 Pressure Adjustment Knob
5 Drive Roll
6 Outlet Wire Guide
7 Gun Conduit Cable

Lay gun cable out straight.

Tools Needed:

- Hold wire tightly to keep it from unraveling.
- Use pressure indicator scale to set a desired drive roll pressure. Begin with a setting of 2. If necessary, make additional adjustments after trying this initial setting.

Open pressure assembly. Pull and hold wire; cut off end. Push wire through guides into gun; continue to hold wire.

Close and tighten pressure assembly, and let go of wire.

Remove gun nozzle and contact tip. Turn On.

Press gun trigger until wire comes out of gun. Reinstall contact tip and nozzle

Feed wire to check drive roll pressure. Tighten knob enough to prevent slipping.

Cut off wire. Close and latch door.

Ref. 275174A / 275167A / 801 083 / Ref. 800 924-D
5-15. Removing MIG Gun To Replace With A Spool Gun

- Turn Off Power.
- Cut Off End Of Wire.
- Open Pressure Assembly.
- Hold wire tightly to keep it from unraveling.
- Rewind Wire Onto Spool, Fasten End Of Wire To Spool.
- Loosen Knob, Disconnect Gun Trigger Plug, And Remove Gun From Unit. (See Section 5-11 For Gun Installation.)
SECTION 6 – OPERATION

6-1. Controls

1. Process Select Button
 Press up and down buttons to select desired welding process.

2. Auto-Set Button
 Press button to turn Auto-Set On or Off.

3. Wire/Rod/Tungsten Buttons
 Press the Plus (+) or Minus (−) button to select the size of wire, rod, or tungsten for the selected process.
 When MIG Aluminum process is selected, Wire/Rod/Tungsten buttons are used to select type of spool gun being used.

4. Material Thickness Buttons
 Press the Plus (+) or Minus (−) button to select material thickness for the selected process.

5. Display

6. Adjustment Knobs

7. Power Switch
 Use switch to turn unit On or Off.
6-2. Welding Parameter Chart – 120V

Steel Wire Welding (MIG/Flux-Cored) Parameters

Material	Polarity	Shielding Gas*	Wire Type	Wire Size	24 ga	22 ga	20 ga	18 ga	16 ga	14 ga	1/8"	3/16"	1/4"	
Steel	DCEP	Solid Wire	0.024	15.1/137	14.3/211	15.2/211	16.1/271	16.3/330	15.8/430	18.0/462	19.7/600	-	-	-
Steel	DCEP	ER70S-6	0.030	14.3/95	14.7/107	15.0/116	15.4/195	15.7/226	15.9/272	17.7/284	18.6/284	-	-	-
Steel	DCEN	None	0.045	-	-	14.9/39	15.2/110	15.4/186	16.7/233	17.7/294	20.4/293	-	-	-
Stainless Steel	Tri-Mix	Stainless	0.045	-	-	-	13.5/62	14.4/60	15.6/112	18.4/170	20.0/200	-	-	-

Aluminum Wire Welding (MIG) Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Shielding Gas*</th>
<th>Wire Type</th>
<th>Wire Size</th>
<th>24 ga (V/Watts)</th>
<th>22 ga (V/Watts)</th>
<th>20 ga (V/Watts)</th>
<th>18 ga (V/Watts)</th>
<th>16 ga (V/Watts)</th>
<th>14 ga (V/Watts)</th>
<th>1/8" (V/Watts)</th>
<th>3/16" (V/Watts)</th>
<th>1/4" (V/Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum. w/ Optional Spoolmate 100</td>
<td>DCEP</td>
<td>Argon</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.9/295</td>
<td>12.3/345</td>
<td>13.8/401</td>
<td>21.0/444</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alum. w/ Optional Spoolmate 150</td>
<td>E9043</td>
<td>Argon</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.9/281</td>
<td>12.3/368</td>
<td>13.8/410</td>
<td>21.0/444</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alum. w/ Optional Spoolmate 150</td>
<td>E90S56</td>
<td>Argon</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.0/274</td>
<td>13.7/484</td>
<td>14.0/534</td>
<td>20.8/600</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TIG Welding Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Shielding Gas*</th>
<th>Tungsten Size</th>
<th>Wire Size</th>
<th>24 ga (Amps)</th>
<th>22 ga (Amps)</th>
<th>20 ga (Amps)</th>
<th>18 ga (Amps)</th>
<th>16 ga (Amps)</th>
<th>14 ga (Amps)</th>
<th>1/8" (Amps)</th>
<th>3/16" (Amps)</th>
<th>1/4" (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel, Stainless Steel</td>
<td>DCEN</td>
<td>Argon</td>
<td>1/16"</td>
<td>-</td>
<td>27</td>
<td>30</td>
<td>35</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>125</td>
<td>137</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/32"</td>
<td>-</td>
<td>27</td>
<td>30</td>
<td>35</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>125</td>
<td>137</td>
<td>-</td>
</tr>
</tbody>
</table>

Stick Welding Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Electrode Type</th>
<th>24 ga (Amps)</th>
<th>22 ga (Amps)</th>
<th>20 ga (Amps)</th>
<th>18 ga (Amps)</th>
<th>16 ga (Amps)</th>
<th>14 ga (Amps)</th>
<th>1/8" (Amps)</th>
<th>3/16" (Amps)</th>
<th>1/4" (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>DCEP</td>
<td>3/32"</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>DCEP</td>
<td>1/8"</td>
<td>45</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>DCEP</td>
<td>5/32"</td>
<td>60</td>
<td>70</td>
<td>95</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>6011</td>
<td>3/32"</td>
<td>45</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>6013</td>
<td>1/8"</td>
<td>45</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>7018</td>
<td>3/32"</td>
<td>60</td>
<td>70</td>
<td>95</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel</td>
<td>5/32"</td>
<td>1/8"</td>
<td>45</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Please see Owner’s Manual for detailed information on welding gas selection and mixtures.

Ref. 272942-B
6-3. Welding Parameter Chart – 240V

Steel Wire Welding (MIG/Flux-Cored) Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Shielding Gas*</th>
<th>Wire Type</th>
<th>Wire Size</th>
<th>240 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCEP</td>
<td></td>
<td>C25</td>
<td>0.034</td>
<td>15.1/137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solid</td>
<td>0.030</td>
<td>14.3/102</td>
</tr>
<tr>
<td>Steel</td>
<td>C100</td>
<td></td>
<td>ER70S-6</td>
<td>0.024</td>
<td>15.6/201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wire Drive</td>
<td>0.035</td>
<td>15.0/120</td>
</tr>
<tr>
<td></td>
<td>DCEP</td>
<td></td>
<td>Stainless</td>
<td>0.024</td>
<td>18.3/275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tri-Mix</td>
<td>0.024</td>
<td>17.8/121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless</td>
<td>0.030</td>
<td>17.0/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel</td>
<td>0.030</td>
<td>18.2/250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>308L</td>
<td>0.024</td>
<td>18.2/250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Shielding Gas*</th>
<th>Wire Type</th>
<th>Wire Size</th>
<th>240 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCEP</td>
<td></td>
<td>ER4043</td>
<td>0.030</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ER4045</td>
<td>0.030</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ES336</td>
<td>0.030</td>
<td>-</td>
</tr>
</tbody>
</table>

TIG Welding Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Shielding Gas*</th>
<th>Tungsten Size</th>
<th>240 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel, Stainless Steel</td>
<td>DCEN</td>
<td>Argon</td>
<td>1/16"</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/32"</td>
<td>27</td>
</tr>
</tbody>
</table>

Stick Welding Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Polarity</th>
<th>Electrode Type</th>
<th>Electrode Size</th>
<th>240 Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>DCEP</td>
<td>6011</td>
<td>3/32"</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6013</td>
<td>3/32"</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7018</td>
<td>3/32"</td>
<td>60</td>
</tr>
</tbody>
</table>

Please see Owner’s Manual for detailed information on welding gas selection and mixtures.

Ref. 27294-B
6-4. Entering Setup Menu

To enter the setup menu, simultaneously press then release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button. After entering the setup menu, the Material Thickness light will flash.

To move to the next setup menu, press the Material Thickness Plus (+) button.

To move to the previous setup menu, press the Material Thickness Minus (−) button.

To exit the setup menu, simultaneously press then release the Wire/Rod/Tungsten Minus (−) button and the Material Thickness Plus (+) button.

Notes

Work like a Pro!

Pros weld and cut safely. Read the safety rules at the beginning of this manual.
6-5. Internal Motor 24 Inch Calibration (Menu 1 Of 10)

The unit’s internal drive motor is calibrated at the factory. No calibration is needed unless drive motor or control board is changed.

1. Wire/Rod/Tungsten Minus (−) Button
2. Material Thickness Plus (+) Button
3. Material Thickness Minus (−) Button
4. Left Adjustment Knob
5. Right Adjustment Knob

Cut wire flush at nozzle.
Follow instructions in Section 6-4 to enter the setup menu.
To perform a motor calibration 24 in. run-out test at 100 IPM, turn left Adjustment knob, and verify that a check mark appears next to 100 IPM. Wait for the lock symbol to change from unlocked to locked.
Be sure wire is cut flush at nozzle, then trigger the MIG gun. Motor will feed approximately 24 in. of wire through gun.
Cut wire flush at nozzle and measure run-out. If length of run-out is not 24 in., turn left Adjustment knob to increase/decrease length of run-out.
Wait for lock symbol to change from unlocked to locked and repeat test.
To perform a motor calibration 24 in. run-out test at 500 IPM, turn right Adjustment knob, and verify that a check mark appears next to 500 IPM. Wait for the lock symbol to change from unlocked to locked.
Be sure wire is cut flush at nozzle, then trigger the MIG gun. Motor will feed approximately 24 in. of wire through gun.
Cut wire flush at nozzle and measure run-out. If length of run-out is not 24 in., turn right Adjustment knob to increase/decrease length of run-out.
Wait for lock symbol to change from unlocked to locked and repeat test.
To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

6-6. Internal Motor Run-In Speed (Menu 2 Of 10)

Follow instructions in Section 6-4 to enter the setup menu.
To change the run-in setting, press the Auto-Set button.
Run-in is the wire speed prior to the welding arc being struck. When set to Automatic, the welder determines the optimal run-in speed for each start. When set to disabled, the run-in speed is the same as the weld wire speed.
To exit the menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.
6-7. Spoolmate™ 24 Inch Calibration (Menu 3 Of 10)

Connect Spoolmate to unit.
Cut wire flush at nozzle.
Follow instructions in Section 6-4 to enter the setup menu.
To perform a Spoolmate calibration 24 in. run-out test at 200 IPM, turn left Adjustment knob, and verify that a check mark appears next to 200 IPM.
Wait for the lock symbol to change from unlocked to locked.
Cut wire flush at nozzle and then trigger the Spoolmate.
Spoolmate will feed approximately 24 in. of wire through gun.
Cut wire flush at nozzle and measure run-out.
If wire length is not 24 in., use left Adjustment knob to increase/decrease length of the run-out.
Wait for the lock symbol to change from unlocked to locked, and repeat the test.
To perform a Spoolmate calibration 24 in. run-out test at 500 IPM, turn right Adjustment knob and verify that a check mark appears next to 500 IPM.
Wait for the lock symbol to change from unlocked to locked.
Cut wire flush at nozzle and then trigger the Spoolmate.
Spoolmate will feed approximately 24 in. of wire through gun.
Cut wire flush at nozzle and measure run-out.
If wire length is not 24 in., use right Adjustment knob to increase/decrease length of the run-out.
Wait for the lock symbol to change from unlocked to locked, and repeat the test.
To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

Ref. 271491A
6-8. Spoolmate Run-In Speed (Menu 4 Of 10)

Follow instructions in Section 6-4 to enter the setup menu.

To change the run-in setting, press the Auto-Set button.

Run-in is the speed of the wire prior to the welding arc being struck.

When set to Automatic, the welder determines the optimal run-in speed for each start.

When set to Disabled, the run-in speed is the same as the weld wire speed.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

6-9. Process Logs (Menu 5 Of 10)

Follow instructions in Section 6-4 to enter the setup menu.

Process Logs menu displays manual time, Auto-Set time, weld cycles, and Auto-Set cycles for the selected process.

To view other processes, use the Process Select buttons to select the desired weld process.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.
6-10. Primary Logs (Menu 6 Of 10)

Follow instructions in Section 6-4 to enter the setup menu.

Primary Logs menu displays power cycles, 120 volt time, and 240 volt time.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

6-11. Error Logs (Menu 7 Of 10)

Follow instructions in Section 6-4 to enter the setup menu.

Error Logs screen displays welder over-temperature errors, shorted output errors, shorted trigger errors, motor current errors, and stuck electrode errors.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.
6-12. Factory Reset (Menu 8 Of 10)

A Factory Reset will reset the primary logs data, process logs data, error logs data, selected process, and all process settings. Motor calibration settings, Spoolmate Calibration settings, and software information will all be retained.

Follow instructions in Section 6-4 to enter the setup menu.

To perform a Factory Reset, press the Auto−Set button.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

Ref. 271491A

6-13. Display Software (Menu 9 Of 10)

Display Software information is for factory and service use only.

Follow instructions in Section 6-4 to enter the setup menu.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

Ref. 271491A
Control Software information is for factory and service use only.

Follow instructions in Section 6-4 to enter the setup menu.

To exit menu, simultaneously press and release the Wire/Rod/Tungsten Minus (−) button and Material Thickness Plus (+) button, or turn unit off and on.

Notes
SECTION 7 – MAINTENANCE & TROUBLESHOOTING

7-1. Routine Maintenance

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Check</th>
<th>Change</th>
<th>Clean</th>
<th>Replace</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 3 Months</td>
<td>⚠️ Damaged Or Unreadable Labels</td>
<td>⚠️ Repair Or Replace Cracked Weld Cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Every 6 Months</td>
<td>⚠️ Inside Unit</td>
<td>⚠️ Clean Drive Rolls</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To be done by Factory Authorized Service Agent

7-2. Overload Protection

1 Supplementary Protector CB1

CB1 protects unit from overload. If CB1 opens, unit shuts down.

Reset supplementary protector.
7-3. Changing Drive Roll Or Wire Inlet Guide

1 Inlet Wire Guide
Remove guide by pressing on barbed area or cutting off one end near housing and pulling it out of hole. Push new guide into hole from rear until it snaps in place.

2 Drive Roll
The drive roll includes three different sized grooves. The text aligned with the drive roll retaining pin indicates the selected groove.

3 Retaining Pin
To secure drive roll, locate open slot and push drive roll completely over retaining pin, then rotate drive roll to desired slot.

See Section 13-2 for optional drive rolls.

Table 7-1. Drive Roll Grooves And Wire Type Compatibility

<table>
<thead>
<tr>
<th>Groove</th>
<th>Compatible Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>.024</td>
<td>.024 Solid Wire</td>
</tr>
<tr>
<td>.030–.035</td>
<td>.030–.035 Solid Wire</td>
</tr>
<tr>
<td>.030–.035 V-Knurled</td>
<td>.030–.035 Flux-Core</td>
</tr>
</tbody>
</table>
7-4. Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Error</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overtemp–Please wait while the welder cools down.</td>
<td>Internal temperature of welder has exceeded the maximum limit.</td>
<td>Wait for unit to cool down. If the fan is not running, contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Shorted trigger–Release 4–pin trigger to clear error.</td>
<td>MIG gun or spool gun trigger is engaged on power up.</td>
<td>Release 4–pin trigger to clear error.</td>
</tr>
<tr>
<td></td>
<td>MIG gun is held during jog for more than 16 feet of wire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spool gun is held during jog for more than 10 seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIG gun or spool gun trigger is engaged for more than 1 second after the arc is broken.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After an overtemp error, the MIG or spool gun trigger is held after the welder has completed cooling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIG gun or spool gun trigger is engaged while the process is changed to Flux Cored or a MIG process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIG gun or spool gun trigger lead voltage exceeds 9 volts caused by the electrode being shorted to the trigger lead.</td>
<td>Fix or replace damaged gun.</td>
</tr>
<tr>
<td></td>
<td>MIG gun or spool gun trigger leads are shorted together.</td>
<td></td>
</tr>
<tr>
<td>Shorted trigger–Release 8–pin trigger to clear error.</td>
<td>The 8–pin trigger is engaged on power-up.</td>
<td>Release the 8–pin trigger.</td>
</tr>
<tr>
<td></td>
<td>The 8–pin trigger is engaged while the process is changed to TIG Lift–Arc Remote.</td>
<td></td>
</tr>
<tr>
<td>Shorted trigger–Release trigger to clear error.</td>
<td>The 4–pin or 8–pin trigger is held during TIG preflow for more than 10 seconds.</td>
<td>Release the 4–pin or 8–pin triggers.</td>
</tr>
<tr>
<td>Shorted output–First remove short, then pull trigger to clear error.</td>
<td>The welding wire came into contact with the workpiece while jogging wire.</td>
<td>Remove short and pull trigger, or wait 30 seconds to clear error.</td>
</tr>
<tr>
<td></td>
<td>MIG gun or spool gun contact tip came into contact with the workpiece while welding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The weld voltage is less than 10 volts for more than 0.2 seconds while welding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output rectifier is damaged.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td></td>
<td>Control board is damaged.</td>
<td></td>
</tr>
<tr>
<td>Stuck electrode–Free stuck electrode to clear error.</td>
<td>Stick welding electrode has become stuck in weld puddle and turned output off.</td>
<td>Remove Stick welding electrode from workpiece and output will turn back on after about one second.</td>
</tr>
<tr>
<td>Stuck electrode–Free tungsten to clear error.</td>
<td>Tungsten electrode has become stuck in weld puddle and turned output off.</td>
<td>Remove the tungsten from workpiece and output will turn back on after about one second.</td>
</tr>
<tr>
<td></td>
<td>Tungsten has contacted workpiece for more than 5 seconds without starting an arc.</td>
<td></td>
</tr>
<tr>
<td>Motor error–Motor has drawn too much current.</td>
<td>Too much pressure on pressure adjust knob.</td>
<td>Reduce pressure on the pressure adjust knob.</td>
</tr>
<tr>
<td></td>
<td>The gun liner is obstructed.</td>
<td>Clear obstruction or replace gun liner.</td>
</tr>
<tr>
<td></td>
<td>The gun contact tip is obstructed.</td>
<td>Clear obstruction or replace contact tip.</td>
</tr>
<tr>
<td></td>
<td>The welding wire is entangled.</td>
<td>Untangle welding wire.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Message</td>
<td>Error</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Fan error-The fan is running too slow or is damaged.</td>
<td>The fan blades are obstructed.</td>
<td>Clear obstruction from fan.</td>
</tr>
<tr>
<td></td>
<td>The fan wiring harness is disconnected.</td>
<td>Reconnect the fan.</td>
</tr>
<tr>
<td></td>
<td>The fan is damaged.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td></td>
</tr>
<tr>
<td>Thermal error–Primary thermistor range error.</td>
<td>The primary circuit thermistor is unplugged.</td>
<td>Reconnect the primary circuit thermistor.</td>
</tr>
<tr>
<td></td>
<td>The primary circuit thermistor is reading too high or too low for a valid temperature.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td></td>
</tr>
<tr>
<td>Thermal error–Secondary thermistor range error.</td>
<td>The secondary circuit thermistor is unplugged.</td>
<td>Reconnect the secondary circuit thermistor.</td>
</tr>
<tr>
<td></td>
<td>The secondary circuit thermistor is reading too high or too low for a valid temperature.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td></td>
</tr>
<tr>
<td>Boost error–Cycle power to clear error.</td>
<td>The primary boost has not successfully been established.</td>
<td>Cycle power to clear error. If this error persists after a power cycle, contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Over voltage–Cycle power to clear error.</td>
<td>Primary voltage is above 310 volts.</td>
<td>Reduce primary voltage below 310 volts.</td>
</tr>
<tr>
<td>Under voltage–Cycle power to clear error.</td>
<td>The primary voltage is below 90 volts.</td>
<td>Increase primary voltage above 90 volts.</td>
</tr>
<tr>
<td>Network error–Communication between micros has been lost.</td>
<td>The two microcontrollers on the control board are no longer communicating.</td>
<td>Cycle power to clear error. If this error persists after a power cycle, contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Network error–Communication between boards has been lost.</td>
<td>The wiring harness between the control board and interface board is damaged.</td>
<td>Cycle power to clear error. If this error persists after a power cycle, contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Cable error–Connect wire feed housing cable to clear error.</td>
<td>A process that requires a welding gun to be attached to the internal motor is selected, but the wire feed housing cable is not attached to either the positive or negative stud of the power source.</td>
<td>Connect wire drive assembly cable to either the positive or negative stud, or select a different process.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
<tr>
<td>Cable error–Wire feed housing cable is touching electrode or work.</td>
<td>A process that does not require a welding gun to be attached to the internal motor is selected, but the wire drive assembly cable is attached to either the positive or negative stud of the power source.</td>
<td>Remove wire drive assembly cable from either the positive or negative stud, or select a different process.</td>
</tr>
<tr>
<td></td>
<td>The control board is damaged.</td>
<td>Contact Miller Electric Mfg. Co. service department.</td>
</tr>
</tbody>
</table>
7-5. Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No weld output; unit completely inoperative.</td>
<td>Place line disconnect switch in On position.</td>
</tr>
<tr>
<td></td>
<td>Check and replace line fuse(s), if necessary, or reset supplementary protector.</td>
</tr>
<tr>
<td></td>
<td>Be sure power cord is plugged in and that receptacle is receiving input power.</td>
</tr>
<tr>
<td>No weld output; unit is on.</td>
<td>Check and secure loose weld cable(s) into receptacle(s).</td>
</tr>
<tr>
<td></td>
<td>Check and correct poor connection of work clamp to workpiece.</td>
</tr>
<tr>
<td>Erratic or improper welding arc or output.</td>
<td>Use proper size and type of weld cable (see your Distributor).</td>
</tr>
<tr>
<td></td>
<td>Clean and tighten weld connections.</td>
</tr>
<tr>
<td></td>
<td>Verify electrode polarity; check and correct poor connections to workpiece.</td>
</tr>
<tr>
<td>Fan not operating.</td>
<td>Unit not warmed up enough to require fan cooling.</td>
</tr>
<tr>
<td></td>
<td>Check for and remove anything blocking fan movement.</td>
</tr>
<tr>
<td></td>
<td>Have Factory Authorized Service Agent check fan motor and control circuitry.</td>
</tr>
<tr>
<td>Stick welding problems: Hard starts; poor welding characteristics; unusual spattering.</td>
<td>Use proper type and size of electrode.</td>
</tr>
<tr>
<td></td>
<td>Verify electrode polarity; check and correct poor connections.</td>
</tr>
<tr>
<td></td>
<td>Make sure a remote control is not connected.</td>
</tr>
<tr>
<td>TIG welding problems: Wandering arc; hard starts; poor welding characteristics; spattering problems.</td>
<td>Use proper type and size of tungsten.</td>
</tr>
<tr>
<td></td>
<td>Use properly prepared tungsten.</td>
</tr>
<tr>
<td></td>
<td>Verify electrode polarity.</td>
</tr>
<tr>
<td>TIG welding problems: Tungsten electrode oxidizing and not remaining bright after welding.</td>
<td>Shield weld zone from drafts.</td>
</tr>
<tr>
<td></td>
<td>Check for correct type shielding gas.</td>
</tr>
<tr>
<td></td>
<td>Check and tighten gas fittings.</td>
</tr>
<tr>
<td></td>
<td>Verify electrode polarity.</td>
</tr>
</tbody>
</table>
Figure 8-1. Circuit Diagram
9-1. Typical GMAW (MIG) Process Connections

![Diagram of GMAW process connections]

- **Regulator/Flowmeter**
- **Wire Feeder/Power Source**
- **Shielding Gas**
- **Gun**
- **Workpiece**
- **Gas**
- **Work Clamp**

Warning: Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.

9-2. Typical GMAW (MIG) Process Control Settings

These settings are guidelines only. Material and wire type, joint design, fitup, position, shielding gas, etc. affect settings. Test welds to be sure they comply to specifications.

- **Select Wire Size**
 - **Wire Size** | **Amperage Range**
 - 0.023 in. | 30 – 90 A
 - 0.030 in. | 40 – 145 A
 - 0.035 in. | 50 – 180 A

- **Select Wire Speed (Amperage)**
 - **Wire Size** | **Recommendation** | **Wire Speed (Approx.)**
 - 0.023 in. | 3.5 in. per ampere | 3.5 x 125 A = 437 ipm
 - 0.030 in. | 2 in. per ampere | 2 x 125 A = 250 ipm
 - 0.035 in. | 1.6 in. per ampere | 1.6 x 125 A = 200 ipm

- **Select Voltage**
 - Low voltage: wire stubs into work
 - High voltage: arc is unstable (spatter)
 - Set voltage midway between high/low voltage

Material thickness determines weld parameters.

1/8 or 0.125 in.

Convert Material Thickness to Amperage (A)

- 0.001 in. = 1 ampere
- 0.125 in. = 125 A

125 A based on 1/8 in. material thickness

ipm = inches per minute

Voltage controls height and width of weld bead.

Wire speed (amperage) controls weld penetration (wire speed = burn-off rate)
9-3. Holding And Positioning Welding Gun

Welding wire is energized when gun trigger is pressed. Before lowering helmet and pressing trigger, be sure wire is no more than 1/2 in. (13 mm) past end of nozzle, and tip of wire is positioned correctly on seam.

1 Hold Gun and Control Gun Trigger
2 Workpiece
3 Work Clamp
4 Electrode Extension (Stickout) Solid Wire – 3/8 to 1/2 in. (9 to 13 mm)
5 Cradle Gun and Rest Hand on Workpiece

9-4. Conditions That Affect Weld Bead Shape

Weld bead shape depends on gun angle, direction of travel, electrode extension (stickout), travel speed, thickness of base metal, wire feed speed (weld current), and voltage.

GUN ANGLES AND WELD BEAD PROFILES

ELECTRODE EXTENSIONS (STICKOUT)

FILLET WELD ELECTRODE EXTENSIONS (STICKOUT)

GUN TRAVEL SPEED
9-5. **Gun Movement During Welding**

Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads works better.

1	Stringer Bead – Steady Movement Along Seam
2	Weave Bead – Side To Side Movement Along Seam
3	Weave Patterns

Use weave patterns to cover a wide area in one pass of the electrode.

9-6. **Poor Weld Bead Characteristics**

1	Large Spatter Deposits
2	Rough, Uneven Bead
3	Slight Crater During Welding
4	Bad Overlap
5	Poor Penetration

9-7. **Good Weld Bead Characteristics**

1	Fine Spatter
2	Uniform Bead
3	Moderate Crater During Welding

Weld a new bead or layer for each 1/8 in. (3.2 mm) thickness in metals being welded.

| 4 | No Overlap |
| 5 | Good Penetration into Base Metal |
9-8. Troubleshooting – Excessive Spatter

![Excessive Spatter](image)

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed speed too high.</td>
<td>Select lower wire feed speed.</td>
</tr>
<tr>
<td>Voltage too high.</td>
<td>Select lower voltage range.</td>
</tr>
<tr>
<td>Electrode extension (stickout) too long.</td>
<td>Use shorter electrode extension (stickout).</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td>Incorrect polarity.</td>
<td>Check polarity required by welding wire, and change to correct polarity at welding power source.</td>
</tr>
</tbody>
</table>

9-9. Troubleshooting – Porosity

![Porosity](image)

Porosity – small cavities or holes resulting from gas pockets in weld metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td></td>
<td>Remove spatter from gun nozzle.</td>
</tr>
<tr>
<td></td>
<td>Check gas hoses for leaks.</td>
</tr>
<tr>
<td></td>
<td>Place nozzle 1/4 to 1/2 in. (6-13 mm) from workpiece.</td>
</tr>
<tr>
<td></td>
<td>Hold gun near bead at end of weld until molten metal solidifies.</td>
</tr>
<tr>
<td>Wrong gas.</td>
<td>Use welding grade shielding gas; change to different gas.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pick up of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, and dirt from work surface before welding.</td>
</tr>
<tr>
<td></td>
<td>Use a more highly deoxidizing welding wire (contact supplier).</td>
</tr>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in. (13 mm) beyond nozzle.</td>
</tr>
</tbody>
</table>

9-10. Troubleshooting – Excessive Penetration

![Excessive Penetration & Good Penetration](image)

Excessive Penetration – weld metal melting through base metal and hanging underneath weld.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
</tbody>
</table>
9-11. Troubleshooting – Lack Of Penetration

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper joint preparation.</td>
<td>Material too thick. Joint preparation and design must provide access to bottom of groove while maintaining proper welding wire extension and arc characteristics.</td>
</tr>
<tr>
<td>Improper weld technique.</td>
<td>Maintain normal gun angle of 0 to 15 degrees to achieve maximum penetration.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Be sure welding wire extends not more than 1/2 in. (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher wire feed speed and/or select higher voltage range.</td>
</tr>
<tr>
<td></td>
<td>Reduce travel speed.</td>
</tr>
<tr>
<td>Incorrect polarity.</td>
<td>Check polarity required by welding wire, and change to correct polarity at welding power source.</td>
</tr>
</tbody>
</table>

9-12. Troubleshooting – Incomplete Fusion

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher voltage range and/or adjust wire feed speed.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding.</td>
</tr>
<tr>
<td></td>
<td>Adjust work angle or widen groove to access bottom during welding.</td>
</tr>
<tr>
<td></td>
<td>Momentarily hold arc on groove side walls when using weaving technique.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Use correct gun angle of 0 to 15 degrees.</td>
</tr>
</tbody>
</table>

9-13. Troubleshooting – Burn-Through

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase and/or maintain steady travel speed.</td>
</tr>
</tbody>
</table>
9-14. Troubleshooting – Waviness Of Bead

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in. (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Unsteady hand.</td>
<td>Support hand on solid surface or use two hands.</td>
</tr>
</tbody>
</table>

9-15. Troubleshooting – Distortion

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Use restraint (clamp) to hold base metal in position.</td>
</tr>
<tr>
<td></td>
<td>Make tack welds along joint before starting welding operation.</td>
</tr>
<tr>
<td></td>
<td>Select lower voltage range and/or reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
<tr>
<td></td>
<td>Weld in small segments and allow cooling between welds.</td>
</tr>
</tbody>
</table>

Notes
9-16. Common GMAW (MIG) Shielding Gases

This is a general chart for common gases and where they are used. Many different combinations (mixtures) of shielding gases have been developed over the years. The most commonly used shielding gases are listed in the following table.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Spray Arc Steel</th>
<th>Short Circuiting Steel</th>
<th>Spray Arc Stainless Steel</th>
<th>Short Circuiting Stainless Steel</th>
<th>Spray Arc Aluminum</th>
<th>Short Circuiting Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon</td>
<td>All Positions5</td>
<td>All Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon + 1% O₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon + 2% O₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon + 5% O₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon + 8% CO₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td>All Positions</td>
</tr>
<tr>
<td>Argon + 25% CO₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td>All Positions4</td>
</tr>
<tr>
<td>Argon + 50% CO₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td>All Positions</td>
</tr>
<tr>
<td>CO₂</td>
<td>Flat & HorizontalFillet</td>
<td>Flat & HorizontalFillet</td>
<td></td>
<td></td>
<td></td>
<td>All Positions</td>
</tr>
<tr>
<td>Helium</td>
<td>All Positions2</td>
<td>All Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon + Helium</td>
<td>All Positions2</td>
<td>All Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tri-Mix</td>
<td>All Positions2</td>
<td>All Positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Globular Transfer
2 Heavy Thicknesses
3 Single Pass Welding Only
4 90% HE + 7-1/2% AR + 2-1/2% CO₂
5 Also for GMAW-P, All Positions

9-17. Troubleshooting Guide For Semiautomatic Welding Equipment

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed motor operates, but wire does not feed.</td>
<td>Too little pressure on wire feed rolls.</td>
<td>Increase pressure setting on wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Incorrect wire feed rolls.</td>
<td>Check size stamped on wire feed rolls, replace to match wire size and type if necessary.</td>
</tr>
<tr>
<td></td>
<td>Wire spool brake pressure too high.</td>
<td>Decrease brake pressure on wire spool.</td>
</tr>
<tr>
<td></td>
<td>Restriction in the gun and/or assembly.</td>
<td>Check and replace cable, gun, and contact tip if damaged. Check size of contact tip and cable liner, replace if necessary.</td>
</tr>
<tr>
<td>Wire curling up in front of the wire feed rolls (bird nesting).</td>
<td>Too much pressure on wire feed rolls.</td>
<td>Decrease pressure setting on wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Incorrect cable liner or gun contact tip size.</td>
<td>Check size of contact tip and check cable liner length and diameter, replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Gun end not inserted into drive housing properly.</td>
<td>Loosen gun securing bolt in drive housing and push gun end into housing just enough so it does not touch wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Dirty or damaged (kinked) liner.</td>
<td>Replace liner.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Wire feeds, but no gas flows.</td>
<td>Gas cylinder empty.</td>
<td>Replace empty gas cylinder.</td>
</tr>
<tr>
<td></td>
<td>Gas nozzle plugged.</td>
<td>Clean or replace gas nozzle.</td>
</tr>
<tr>
<td></td>
<td>Gas cylinder valve not open or flowmeter not adjusted.</td>
<td>Open gas valve at cylinder and adjust flow rate.</td>
</tr>
<tr>
<td></td>
<td>Restriction in gas line.</td>
<td>Check gas hose between flowmeter and wire feeder, and gas hose in gun and cable assembly.</td>
</tr>
<tr>
<td></td>
<td>Loose or broken wires to gas solenoid.</td>
<td>Have Factory Authorized Service Agent repair wiring.</td>
</tr>
<tr>
<td></td>
<td>Gas solenoid valve not operating.</td>
<td>Have Factory Authorized Service Agent replace gas solenoid valve.</td>
</tr>
<tr>
<td></td>
<td>Incorrect primary voltage connected to welding power source.</td>
<td>Check primary voltage and relink welding power source for correct voltage.</td>
</tr>
<tr>
<td>Welding arc not stable.</td>
<td>Wire slipping in drive rolls.</td>
<td>Adjust pressure setting on wire feed rolls. Replace worn drive rolls if necessary.</td>
</tr>
<tr>
<td></td>
<td>Wrong size gun liner or contact tip.</td>
<td>Match liner and contact tip to wire size and type.</td>
</tr>
<tr>
<td></td>
<td>Incorrect voltage setting for selected wire feed speed on welding power source.</td>
<td>Readjust welding parameters.</td>
</tr>
<tr>
<td></td>
<td>Loose connections at the gun weld cable or work cable.</td>
<td>Check and tighten all connections.</td>
</tr>
<tr>
<td></td>
<td>Gun in poor shape or loose connection inside gun.</td>
<td>Repair or replace gun as necessary.</td>
</tr>
</tbody>
</table>
10-1. Stick Welding Procedure

- Weld current starts when electrode touches workpiece.
- Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.
- Always wear appropriate personal protective clothing.

1 Workpiece
Make sure workpiece is clean before welding.

2 Work Clamp
Place as close to the weld as possible.

3 Electrode
Before striking an arc, insert an electrode in the electrode holder. A small diameter electrode requires less current than a large one. Follow recommendations of the electrode manufacturer when setting weld amperage (see Section 10-2).

4 Insulated Electrode Holder

5 Electrode Holder Position

6 Arc Length
Arc length is the distance from the electrode to the workpiece. A short arc with correct amperage will give a sharp, crackling sound. Correct arc length is related to electrode diameter. Examine the weld bead to determine if the arc length is correct.

Arc length for 1/16 and 3/32 in. diameter electrodes should be about 1/16 in. (1.6 mm); arc length for 1/8 and 5/32 in. electrodes should be about 1/8 in. (3 mm).

7 Slag
Use a chipping hammer and wire brush to remove slag. Remove slag and check weld bead before making another weld pass.
10-2. Electrode and Amperage Selection Chart

<table>
<thead>
<tr>
<th>ELECTRODE</th>
<th>DIAMETER</th>
<th>AMPERAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010 & 6011</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>7/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>5/64</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>6010 & 6011</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>7/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>7/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7014</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>1/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>7024</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>7/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>308L</td>
<td>3/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>308L</td>
<td>1/8</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>308L</td>
<td>5/32</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>308L</td>
<td>3/16</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
<tr>
<td>308L</td>
<td>1/4</td>
<td>50 100 150 200 250 300 350 400 450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRODE</th>
<th>DC</th>
<th>AC</th>
<th>POSITION</th>
<th>PENETRATION</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6010</td>
<td>EP</td>
<td>ALL</td>
<td>DEEP</td>
<td>DEEP</td>
<td>MIN. PREP, BLOW, HIGH SPATTER</td>
</tr>
<tr>
<td>6011</td>
<td>EP</td>
<td>ALL</td>
<td>DEEP</td>
<td>ALL</td>
<td>GENERAL</td>
</tr>
<tr>
<td>6013</td>
<td>EP</td>
<td>ALL</td>
<td>LOW</td>
<td>LOW</td>
<td>SMOOTH, EASY, FAST</td>
</tr>
<tr>
<td>7014</td>
<td>EP</td>
<td>ALL</td>
<td>MED</td>
<td>MED</td>
<td>LOW HYDROGEN, STRONG</td>
</tr>
<tr>
<td>7018</td>
<td>EP</td>
<td>ALL</td>
<td>MED</td>
<td>LOW</td>
<td>SMOOTH, EASY, FAST</td>
</tr>
<tr>
<td>7024</td>
<td>EP</td>
<td>ALL</td>
<td>LOW</td>
<td>LOW</td>
<td>SMOOTH, EASY, FAST</td>
</tr>
<tr>
<td>Ni-Cl</td>
<td>EP</td>
<td>ALL</td>
<td>LOW</td>
<td>ALL</td>
<td>CAST IRON</td>
</tr>
<tr>
<td>308L</td>
<td>EP</td>
<td>ALL</td>
<td>LOW</td>
<td>ALL</td>
<td>STAINLESS</td>
</tr>
</tbody>
</table>

*EP = ELECTRODE POSITIVE (REVERSE POLARITY)
EN = ELECTRODE NEGATIVE (STRAIGHT POLARITY)

10-3. Striking an Arc

Weld current starts when electrode touches workpiece.

1. Electrode
2. Workpiece
3. Arc

Scratch Technique

Drag electrode across workpiece like striking a match; lift electrode slightly after touching work. If arc goes out, electrode was lifted too high. If electrode sticks to workpiece, use a quick twist to free it.

Tapping Technique

Bring electrode straight down to workpiece; then lift slightly to start arc. If arc goes out, electrode was lifted too high. If electrode sticks to workpiece, use a quick twist to free it.
10-4. Positioning Electrode Holder

1 End View Of Work Angle
2 Side View Of Electrode Angle

After learning to start and hold an arc, practice running beads of weld metal on flat plates using a full electrode.

Hold the electrode nearly perpendicular to the work, although tilting it ahead (in the direction of travel) will be helpful.

To produce the best results, hold a short arc, travel at a uniform speed, and feed the electrode downward at a constant rate as it melts.

10-5. Poor Weld Bead Characteristics

1 Large Spatter Deposits
2 Rough, Uneven Bead
3 Slight Crater During Welding
4 Bad Overlap
5 Poor Penetration

10-6. Good Weld Bead Characteristics

1 Fine Spatter
2 Uniform Bead
3 Moderate Crater During Welding

Weld a new bead or layer for each 1/8 in. (3.2 mm) thickness in metals being welded.

4 No Overlap
5 Good Penetration into Base Metal
10-7. Conditions That Affect Weld Bead Shape

Weld bead shape is affected by electrode angle, arc length, travel speed, and thickness of base metal.

- **Electrode Angle**
 - Angle Too Small
 - Correct Angle: 10° - 30°
 - Angle Too Large

- **Arc Length**
 - Too Short
 - Normal
 - Too Long

- **Travel Speed**
 - Slow
 - Normal
 - Fast

10-8. Electrode Movement During Welding

- Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads work better.

1. **Stringer Bead – Steady Movement Along Seam**
2. **Weave Bead – Side to Side Movement Along Seam**
3. **Weave Patterns**

Use weave patterns to cover a wide area in one pass of the electrode. Do not let weave width exceed 2-1/2 times diameter of electrode.

10-9. Welding Lap Joints

- **Electrode**
- **Single-Layer Fillet Weld**
 - Move electrode in circular motion.
- **Multi-Layer Fillet Weld**
 - Weld a second layer when a heavier fillet is needed. Remove slag before making another weld pass. Weld both sides of joint for maximum strength.
10-10. Welding Groove (Butt) Joints

1. Tack Welds
 Prevent butt joint distortion by tack welding the materials in position before final weld.

2. Workpiece distortion occurs when heat is applied locally to a joint. One side of a metal plate will "curl" up toward the weld. Distortion will also cause the edges of a butt joint to pull together ahead of the electrode as the weld cools.

3. Square Groove Weld
4. Single V-Groove Weld
5. Double V-Groove Weld
 Materials up to 3/16 in. (5 mm) thick can often be welded without special preparation using the square groove weld. However, when welding thicker materials it may be necessary to prepare the edges (V-groove) of butt joints to ensure good welds.

 The single or double V-groove weld is good for materials 3/16 – 3/4 in. (5-19 mm) thick. Generally, the single V-groove is used on materials up to 3/4 in. (19 mm) thick and when, regardless of thickness, you can weld from one side only. Create a 30 degree bevel with oxy-acetylene or plasma cutting equipment. Remove scale from material after cutting. A grinder can also be used to prepare bevels.

S-0062

10-11. Welding Tee Joints

1. Electrode
2. Fillet Weld
 Keep arc short and move at definite rate of speed. Hold electrode as shown to provide fusion into the corner. Square edge of the weld surface.

 For maximum strength weld both sides of upright section.

3. Multi-Layer Deposits
 Weld a second layer when a heavier fillet is needed. Use any of the weaving patterns shown in Section 10-8. Remove slag before making another weld pass.

S-0060 / S-0058-A / S-0061
10-12. Weld Test

Strike the weld joint in the direction shown. A good weld bends over but does not break.

If the weld breaks, examine it to determine the cause.

If the weld is porous (many holes), the arc length was probably too long.

If the weld contains bits of slag, the arc may have been too long or the electrode was moved incorrectly which allowed molten slag to be trapped in the weld. This may happen on a V-groove joint made in several layers and calls for additional cleaning between layers.

If the original beveled surface is visible the material was not fully melted which is often caused by insufficient heat or too fast a travel speed.

10-13. Troubleshooting

Porosity – small cavities or holes resulting from gas pockets in weld metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc length too long.</td>
<td>Reduce arc length.</td>
</tr>
<tr>
<td>Damp electrode.</td>
<td>Use dry electrode.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, slag, and dirt from work surface before welding.</td>
</tr>
</tbody>
</table>

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperage too high for electrode.</td>
<td>Decrease amperage or select larger electrode.</td>
</tr>
<tr>
<td>Arc length too long or voltage too high.</td>
<td>Reduce arc length or voltage.</td>
</tr>
</tbody>
</table>

Incomplete Fusion – failure of weld metal to fuse completely with base metal or a preceding weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient heat input.</td>
<td>Increase amperage. Select larger electrode and increase amperage.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding.</td>
</tr>
<tr>
<td></td>
<td>Adjust work angle or widen groove to access bottom during welding.</td>
</tr>
<tr>
<td></td>
<td>Momentarily hold arc on groove side walls when using weaving technique.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, slag, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Lack Of Penetration</td>
<td>Lack Of Penetration – shallow fusion between weld metal and base metal.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Good Penetration</td>
<td></td>
</tr>
</tbody>
</table>

Possible Causes **Corrective Actions**

- Improper joint preparation.
 - Material too thick. Joint preparation and design must provide access to bottom of groove.

- Improper weld technique.
 - Keep arc on leading edge of weld puddle.

- Insufficient heat input.
 - Increase amperage. Select larger electrode and increase amperage.
 - Reduce travel speed.

<table>
<thead>
<tr>
<th>Excessive Penetration</th>
<th>Excessive Penetration – weld metal melting through base metal and hanging underneath weld.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Penetration</td>
<td></td>
</tr>
</tbody>
</table>

Possible Causes **Corrective Actions**

- Excessive heat input.
 - Select lower amperage. Use smaller electrode.
 - Increase and/or maintain steady travel speed.

- **Burn-Through** – weld metal melting completely through base metal resulting in holes where no metal remains.

Possible Causes **Corrective Actions**

- Excessive heat input.
 - Select lower amperage. Use smaller electrode.
 - Increase and/or maintain steady travel speed.

- **Waviness Of Bead** – weld metal that is not parallel and does not cover joint formed by base metal.

Possible Causes **Corrective Actions**

- Unsteady hand.
 - Use two hands. Practice technique.

- **Distortion** – contraction of weld metal during welding that forces base metal to move.

 Base metal moves in the direction of the weld bead.

Possible Causes **Corrective Actions**

- Excessive heat input.
 - Use restraint (clamp) to hold base metal in position.
 - Make tack welds along joint before starting welding operation.
 - Select lower amperage for electrode.
 - Increase travel speed.
 - Weld in small segments and allow cooling between welds.

OM-272989 Page 62
11-1. Selecting Tungsten Electrode (Wear Clean Gloves To Prevent Contamination Of Tungsten)

Not all tungsten electrode manufacturers use the same colors to identify tungsten type. Contact the tungsten electrode manufacturer or reference the product packaging to identify the tungsten you are using.

<table>
<thead>
<tr>
<th>Electrode Diameter</th>
<th>Amperage Range - Gas Type - Polarity</th>
<th>Electrode Diameter</th>
<th>Amperage Range - Gas Type - Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>.010 in. (.25 mm)</td>
<td>Up to 25</td>
<td>.020 in. (.50 mm)</td>
<td>Up to 15-40</td>
</tr>
<tr>
<td>.040 in. (1 mm)</td>
<td>15-50</td>
<td>1/16 in. (1.6 mm)</td>
<td>25-85</td>
</tr>
<tr>
<td>3/32 in. (2.4 mm)</td>
<td>50-160</td>
<td>1/8 in. (3.2 mm)</td>
<td>130-250</td>
</tr>
<tr>
<td>5/32 in. (4.0 mm)</td>
<td>250-400</td>
<td>3/16 in (4.8 mm)</td>
<td>400-500</td>
</tr>
<tr>
<td>1/4 in. (6.4 mm)</td>
<td>750-1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

典型argon shielding gas flow rates are 11 to 35 CFH (cubic feet per hour).

Figures listed are a guide and are a composite of recommendations from American Welding Society (AWS) and electrode manufacturers.

11-2. Preparing Tungsten Electrode For DC Electrode Negative (DCEN) Welding Or AC Welding With Inverter Machines

Grinding the tungsten electrode produces dust and flying sparks which can cause injury and start fires. Use local exhaust (forced ventilation) at the grinder or wear an approved respirator. Read MSDS for safety information. Consider using tungsten containing ceria, lanthana, or yttria instead of thoria. Grinding dust from thoriated electrodes contains low-level radioactive material. Properly dispose of grinder dust in an environmentally safe way. Wear proper face, hand, and body protection. Keep flammables away.

1 Grinding Wheel
Grind end of tungsten on fine grit, hard abrasive wheel before welding. Do not use wheel for other jobs or tungsten can become contaminated causing lower weld quality.

2 Tungsten Electrode
A 2% ceriated tungsten is recommended.

3 Flat
Diameter of this flat determines amperage capacity.

4 Straight Ground
Grind lengthwise, not radial.
12-1. Positioning The Torch

Grinding the tungsten electrode produces dust and flying sparks which can cause injury and start fires. Use local exhaust (forced ventilation) at the grinder or wear an approved respirator. Read MSDS for safety information. Consider using cerium or lanthanum based tungsten instead of thoriated. Thorium dust contains low-level radioactive material. Properly dispose of grinder dust in an environmentally safe way. Wear proper face, hand, and body protection. Keep flammables away.

1. Workpiece
Make sure workpiece is clean before welding.

2. Work Clamp
Place as close to the weld as possible.

3. Torch

4. Filler Rod (If Applicable)

5. Gas Cup

6. Tungsten Electrode

Select and prepare tungsten according to Section 11.

Guidelines:
The inside diameter of the gas cup should be at least three times the tungsten diameter to provide adequate shielding gas coverage. (For example, if tungsten is 1/16 in. diameter, gas cup should be a minimum of 3/16 in. diameter.

Tungsten extension is the distance the tungsten extends out gas cup of torch.

The tungsten extension should be no greater than the inside diameter of the gas cup.

Arc length is the distance from the tungsten to the workpiece.
12-2. Torch Movement During Welding

Tungsten Without Filler Rod

- **Welding direction**
 - Form pool
 - Tilt torch
 - Move torch to front of pool. Repeat process.

Tungsten With Filler Rod

- **Welding direction**
 - Form pool
 - Tilt torch
 - Add filler metal
 - Remove rod
 - Move torch to front of pool. Repeat process.

12-3. Positioning Torch Tungsten For Various Weld Joints

Butt Weld And Stringer Bead

- 90°
- 70°
- 20°

“T” Joint

- 20°
- 75°

Lap Joint

- 20-40°
- 30°
- 15°
- 75°

Corner Joint

- 90°
- 75°
- 15°
13-1. Recommended Spare Parts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>246372</td>
<td>Nozzle, slip type .500 orf flush</td>
<td>1</td>
</tr>
<tr>
<td>087299</td>
<td>Tip, contact scr .023 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td>000067</td>
<td>Tip, contact scr .030 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td>000068</td>
<td>Tip, contact scr .035 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td>000069</td>
<td>Tip, contact scr .045 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td>194010</td>
<td>Liner, monocoil .023/.025 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td>194011</td>
<td>Liner, monocoil .030/.035 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td>194012</td>
<td>Liner, monocoil .035/.045 wire x 15ft (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td>079975</td>
<td>O-RING, .187 ID x .103CS rbr</td>
<td>1</td>
</tr>
</tbody>
</table>

To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.

13-2. Drive Rolls

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Wire Diameter in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>261157</td>
<td>.024 (.6), .030/.035 (.8 and .9) (Standard) and .030/.035 (.8 and .9) (VK Groove)</td>
</tr>
<tr>
<td>202179</td>
<td>.024 (.6) and .030/.035 (.8 and .9) (Standard)</td>
</tr>
<tr>
<td>202926</td>
<td>.030/.035 (.8 and .9) and .045 (1.2 VK Groove)</td>
</tr>
</tbody>
</table>

* Optional

※ A complete Parts List is available on-line at www.MillerWelds.com
LIMITED WARRANTY — Subject to the terms and conditions below, Miller Electric Mfg. Co., Appleton, Wisconsin, warrants to its original retail purchaser that new Miller equipment sold after the effective date of this limited warranty is free of defects in material and workmanship at the time it is shipped by Miller. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS.

Within the warranty periods listed below, Miller will repair or replace any warranted parts or components that fail due to such defects in material or workmanship. Miller must be notified in writing within thirty (30) days of such defect or failure, at which time Miller will provide instructions on the warranty claim procedures to be followed. If notification is submitted as an online warranty claim, the claim must include a detailed description of the fault and the troubleshooting steps taken to identify failed components and the cause of their failure.

Miller shall honor warranty claims on warranted equipment listed below in the event of such a failure within the warranty time periods. All warranty time periods start on the delivery date of the equipment to the original end-user purchaser, and not to exceed twelve months after the equipment is shipped to a North American distributor or eighteen months after the equipment is shipped to an International distributor.

1. 5 Years Parts — 3 Years Labor
 * Original Main Power Rectifiers Only to Include SCRs, Diodes, and Discrete Rectifier Modules
2. 3 Years — Parts and Labor
 * Auto-Darkening Helmet Lenses (Except Classic Series) (No Labor)
 * Engine Driven Welder/Generators
 *(NOTE: Engines are Warranted Separately by the Engine Manufacturer.)
 * Inverter Power Sources
 * Plasma Arc Cutting Power Sources
 * Process Controllers
 * Semi-Automatic and Automatic Wire Feeders
 * Transformer/Rectifier Power Sources
3. 2 Years — Parts and Labor
 * Auto-Darkening Helmet Lenses — Classic Series Only (No Labor)
 * Fume Extractors — Capture 5, Filtair 400 and Industrial Collector Series
4. 1 Year — Parts and Labor Unless Specified
 * Automatic Motion Devices
 * CoolBelt and CoolBand Blower Unit (No Labor)
 * Desiccant Air Dryer System
 * External Monitoring Equipment and Sensors
 (NOTE: Field options are covered for the remaining warranty period of the product they are installed in, or for a minimum of one year — whichever is greater.)
 * RFCS Foot Controls (Except RFCS-RJ45)
 * Fume Extractors – Filtair 130, MWX and SWX Series
 * HF Units
 * ICE/XT Plasma Cutting Torches (No Labor)
 * Induction Heating Power Sources, Coolers
 *(NOTE: Digital Recorders are Warranted Separately by the Manufacturer.)
 * LiveArc Welding Performance Management System
 * Load Banks
 * Motor-Driven Guns (except Spoolmate Spoolguns)
 * PAPR Blower Unit (No Labor)
 * Positioners and Controllers
 * Rails
 * Running Gear/Trailers
 * Spot Welders
 * Subarc Wire Drive Assemblies
 * Water Coolant Systems
 * TIG Torches (No Labor)
 * Wireless Remote Foot/Hand Controls and Receivers
 * Work Stations/Weld Tables (No Labor)

5. 6 Months — Parts
 * Batteries
 * Bernard Guns (No Labor)
 * Tregaskiss Guns (No Labor)
6. 90 Days — Parts
 * Consumables (Kits)
 * Canvas Covers
 * Induction Heating Coils and Blankets, Cables, and Non-Electronic Controls
 * M-Guns
 * MIG Guns and Subarc (SAW) Torches
 * Remote Controls and RFCS-RJ45
 * Replacement Parts (No labor)
 * Roughneck Guns
 * Spoolmate Spoolguns

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, relays, work station table tops and welding curtains, or parts that fail due to normal wear. (Exception: brushes and relays are covered on all engine-driven products.)
2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.

3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards, or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B., Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, MILLER DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE, WITH RESPECT TO ANY AND ALL EQUIPMENT FURNISHED BY MILLER IS EXCLUDED AND DISCLAIMED BY MILLER.

Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.

Effective January 1, 2016

(=Warranty with a serial number preface of MG or newer)

This limited warranty supersedes all previous Miller warranties and is exclusive with no other guarantees or warranties expressed or implied.

Warranty Questions?
Call 1-800-4-A-MILLER for your local Miller distributor.

Your distributor also gives you...

Service You always get the fast, reliable response you need. Most replacement parts can be in your hands in 24 hours.

Support Need fast answers to the tough welding questions? Contact your distributor. The expertise of the distributor and Miller is there to help you, every step of the way.
Owner’s Record

Please complete and retain with your personal records.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Serial/Style Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>(Date which equipment was delivered to original customer)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Distributor</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

For Service

Contact a DISTRIBUTOR or SERVICE AGENCY near you.

Always provide Model Name and Serial/Style Number.

<table>
<thead>
<tr>
<th>Contact your Distributor for:</th>
<th>Welding Supplies and Consumables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Options and Accessories</td>
</tr>
<tr>
<td></td>
<td>Personal Safety Equipment</td>
</tr>
<tr>
<td></td>
<td>Service and Repair</td>
</tr>
<tr>
<td></td>
<td>Replacement Parts</td>
</tr>
<tr>
<td></td>
<td>Training (Schools, Videos, Books)</td>
</tr>
<tr>
<td></td>
<td>Technical Manuals (Servicing Information and Parts)</td>
</tr>
<tr>
<td></td>
<td>Circuit Diagrams</td>
</tr>
<tr>
<td></td>
<td>Welding Process Handbooks</td>
</tr>
</tbody>
</table>

To locate a Distributor or Service Agency visit www.millerwelds.com or call 1-800-4-A-Miller

<table>
<thead>
<tr>
<th>Contact the Delivering Carrier to:</th>
<th>File a claim for loss or damage during shipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For assistance in filing or settling claims, contact your distributor and/or equipment manufacturer's Transportation Department.</td>
</tr>
</tbody>
</table>
