Millermatic® 140 Auto–Set™
And 180 Auto-Set™

Owner’s Manual
From Miller to You

Thank you and congratulations on choosing Miller. Now you can get the job done and get it done right. We know you don’t have time to do it any other way.

That’s why when Niels Miller first started building arc welders in 1929, he made sure his products offered long-lasting value and superior quality. Like you, his customers couldn’t afford anything less. Miller products had to be more than the best they could be. They had to be the best you could buy.

Today, the people that build and sell Miller products continue the tradition. They’re just as committed to providing equipment and service that meets the high standards of quality and value established in 1929.

This Owner’s Manual is designed to help you get the most out of your Miller products. Please take time to read the Safety precautions. They will help you protect yourself against potential hazards on the worksite.

We’ve made installation and operation quick and easy. With Miller you can count on years of reliable service with proper maintenance. And if for some reason the unit needs repair, there’s a Troubleshooting section that will help you figure out what the problem is. The parts list will then help you to decide the exact part you may need to fix the problem. Warranty and service information for your particular model are also provided.

Miller Electric manufactures a full line of welders and welding related equipment. For information on other quality Miller products, contact your local Miller distributor to receive the latest full line catalog or individual specification sheets. To locate your nearest distributor or service agency call 1-800-4-A-Miller, or visit us at www.MillerWelds.com on the web.
TABLE OF CONTENTS

SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING .. 1
 1-1. Symbol Usage 1
 1-2. Arc Welding Hazards 1
 1-3. Additional Symbols For Installation, Operation, And Maintenance 3
 1-4. California Proposition 65 Warnings 4
 1-5. Principal Safety Standards 4
 1-6. EMF Information 4

SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION 5
 2-1. Symboles utilisés 5
 2-2. Dangers relatifs au soudage à l’arc 5
 2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance 7
 2-4. Proposition californienne 65 Avertissements 8
 2-5. Principales normes de sécurité 9
 2-6. Informations relatives aux CEM 9

SECTION 3 – SPECIFICATIONS 11
 3-1. Specifications 11
 3-2. Duty Cycle And Overheating 12
 3-3. Volt-Ampere Curves 13

SECTION 4 – INSTALLATION 14
 4-1. Installing Welding Gun 14
 4-2. Installing Work Clamp 14
 4-3. Work Cable Routing Inside Unit 15
 4-4. Process/Polarity Table 15
 4-5. Changing Polarity 15
 4-6. Installing Gas Supply 16
 4-7. Serial Number And Rating Label Location 17
 4-8. Selecting A Location And Connecting Input Power For 115 VAC Model 17
 4-9. Selecting A Location And Connecting Input Power For 230 VAC Model 18
 4-10. Electrical Service Guide For 230 VAC Model .. 19
 4-11. Installing Wire Spool And Adjusting Hub Tension 19
 4-12. Threading Welding Wire 20
 4-13. Removing MIG Gun From Welding Power Source 21
 4-14. Installing Switch For Optional Spool Gun .. 22
 4-15. Connecting Spool Gun To Millermatic 140/180 23

SECTION 5 – OPERATION .. 24
 5-1. Controls For 115 VAC Model w/Auto-Set .. 24
 5-2. Controls For 230 VAC Model w/Auto-Set .. 25
 5-3. Weld Parameter Chart For 115 VAC Model w/Auto-Set 26
 5-4. Weld Parameter Chart For 230 VAC Model w/Auto-Set 27

SECTION 6 – MAINTENANCE & TROUBLESHOOTING .. 28
 6-1. Routine Maintenance 28
 6-2. Overload Protection 28
 6-3. Drive Motor Protection And Tip Saver/Short Circuit Protection 28
 6-4. Changing Drive Roll Or Wire Inlet Guide ... 29
 6-5. Troubleshooting Table 30

SECTION 7 – ELECTRICAL DIAGRAM 32
<table>
<thead>
<tr>
<th>SECTION 8 – MIG WELDING (GMAW) GUIDELINES</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1. Typical MIG Process Connections</td>
<td>34</td>
</tr>
<tr>
<td>8-2. Typical MIG Process Control Settings</td>
<td>35</td>
</tr>
<tr>
<td>8-3. Holding And Positioning Welding Gun</td>
<td>36</td>
</tr>
<tr>
<td>8-4. Conditions That Affect Weld Bead Shape</td>
<td>37</td>
</tr>
<tr>
<td>8-5. Gun Movement During Welding</td>
<td>38</td>
</tr>
<tr>
<td>8-6. Poor Weld Bead Characteristics</td>
<td>38</td>
</tr>
<tr>
<td>8-7. Good Weld Bead Characteristics</td>
<td>38</td>
</tr>
<tr>
<td>8-8. Troubleshooting – Excessive Spatter</td>
<td>39</td>
</tr>
<tr>
<td>8-9. Troubleshooting – Porosity</td>
<td>39</td>
</tr>
<tr>
<td>8-10. Troubleshooting – Excessive Penetration</td>
<td>39</td>
</tr>
<tr>
<td>8-11. Troubleshooting – Lack Of Penetration</td>
<td>40</td>
</tr>
<tr>
<td>8-12. Troubleshooting – Incomplete Fusion</td>
<td>40</td>
</tr>
<tr>
<td>8-13. Troubleshooting – Burn-Through</td>
<td>40</td>
</tr>
<tr>
<td>8-14. Troubleshooting – Waviness Of Bead</td>
<td>41</td>
</tr>
<tr>
<td>8-15. Troubleshooting – Distortion</td>
<td>41</td>
</tr>
<tr>
<td>8-16. Common MIG Shielding Gases</td>
<td>42</td>
</tr>
<tr>
<td>8-17. Troubleshooting Guide For Semiautomatic Welding Equipment</td>
<td>42</td>
</tr>
<tr>
<td>SECTION 9 – PARTS LIST</td>
<td>44</td>
</tr>
<tr>
<td>WARRANTY</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING

⚠️ Protect yourself and others from injury — read, follow, and save these important safety precautions and operating instructions.

1-1. Symbol Usage

⚠️ DANGER! - Indicates a hazardous situation which, if not avoided, will result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

⚠️ Indicates a hazardous situation which, if not avoided, could result in death or serious injury. The possible hazards are shown in the adjoining symbols or explained in the text.

NOTICE – Indicates statements not related to personal injury.

1-2. Arc Welding Hazards

The symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-5. Read and follow all Safety Standards.

Only qualified persons should install, operate, maintain, and repair this unit.

During operation, keep everybody, especially children, away.

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- Do not touch live electrical parts.
- Wear dry, hole-free insulating gloves and body protection.
- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.
- Do not use AC output in damp areas, if movement is confined, or if there is a danger of falling.
- Use AC output ONLY if required for the welding process.
- If AC output is required, use remote output control if present on unit.
- Additional safety precautions are required when any of the following electrically hazardous conditions are present: in damp locations or while wearing wet clothing; on metal structures such as floors, gratings, or scaffolds; when in cramped positions such as sitting, kneeling, or lying; or when there is a high risk of avoidable or accidental contact with the workpiece or ground. For these conditions, use the following equipment in order presented: 1) a semiautomatic (DC constant voltage (wire) welder), 2) a DC manual (stick) welder, or 3) an AC welder with reduced open-circuit voltage. In most situations, use of a DC, constant voltage wire welder is recommended. And, do not work alone!
- Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).
- Properly install, ground, and operate this equipment according to its Owner’s Manual and national, state, and local codes.

- Always verify the supply ground – check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.
- When making input connections, attach proper grounding conductor first – double-check connections.
- Keep cords dry, free of oil and grease, and protected from hot metal and sparks.
- Frequently inspect input power cord for damage or bare wiring – replace cord immediately if damaged – bare wiring can kill.
- Turn off all equipment when not in use.
- Do not use worn, damaged, undersized, or poorly spliced cables.
- Do not drape cables over your body.
- If earth grounding of the workpiece is required, ground it directly with a separate cable.
- Do not touch electrode if you are in contact with the work, ground, or another electrode from a different machine.
- Do not touch electrode holders connected to two welding machines at the same time since double open-circuit voltage will be present.
- Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.
- Wear a safety harness if working above floor level.
- Keep all panels and covers securely in place.
- Insulate work clamp when not connected to workpiece to prevent burns.
- Insulate work clamp when not connected to workpiece to prevent contact with any metal object.
- Do not connect more than one electrode or work cable to any single weld output terminal. Disconnect cable for process not in use.

SIGNIFICANT DC VOLTAGE exists in inverter welding power sources AFTER removal of input power.

- Turn Off inverter, disconnect input power, and discharge input capacitors according to instructions in Maintenance Section before touching any parts.

HOT PARTS can burn.

- Do not touch hot parts bare handed.
- Allow cooling period before working on equipment.
- To handle hot parts, use proper tools and/or wear heavy, insulated welding gloves and clothing to prevent burns.
FUMES AND GASES can be hazardous.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use local forced ventilation at the arc to remove welding fumes and gases.
- If ventilation is poor, wear an approved air-supplied respirator.
- Read and understand the Material Safety Data Sheets (MSDSs) and the manufacturer’s instructions for metals, consumables, coatings, cleaners, and degreasers.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watchperson nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
- Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.

FLYING METAL or DIRT can injure eyes.

- Wear approved safety glasses with side shields even under your welding helmet.

ARC RAYS can burn eyes and skin.

Arc rays from the welding process produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.

- Wear an approved welding helmet fitted with a proper shade of filter lenses to protect your face and eyes from arc rays and sparks when welding or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash, glare and sparks; warn others not to watch the arc.
- Wear protective clothing made from durable, flame-resistant material (leather, heavy cotton, or wool) and foot protection.

WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Do not weld where flying sparks can strike flammable material.
- Protect yourself and others from flying sparks and hot metal.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on containers that have held combustibles, or on closed containers such as tanks, drums, or pipes unless they are properly prepared according to AWS F4.1 and AWS A6.0 (see Safety Standards).
- Do not weld where the atmosphere may contain flammable dust, gas, or liquid vapors (such as gasoline).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock, sparks, and fire hazards.
- Do not use welder to thaw frozen pipes.

ELECTRIC AND MAGNETIC FIELDS (EMF) can affect Implanted Medical Devices.

- Wearsers of Pacemakers and other Implanted Medical Devices should keep away.
- Implanted Medical Device wearers should consult their doctor and the device manufacturer before going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations.

BUILDUP OF GAS can injure or kill.

- Shut off compressed gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

NOISE can damage hearing.

Noise from some processes or equipment can damage hearing.

- Wear approved ear protection if noise level is high.

CYLINDERS can explode if damaged.

Compressed gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

- Protect compressed gas cylinders from excessive heat, mechanical shocks, physical damage, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
- Keep cylinders away from any welding or other electrical circuits.
- Never drape a welding torch over a gas cylinder.
- Never allow a welding electrode to touch any cylinder.
- Never weld on a pressurized cylinder – explosion will result.
- Use only correct compressed gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- Turn face away from valve outlet when opening cylinder valve.
- Keep protective cap in place over valve except when cylinder is in use or connected for use.
- Use the right equipment, correct procedures, and sufficient number of persons to lift and move cylinders.
- Read and follow instructions on compressed gas cylinders, associated equipment, and Compressed Gas Association (CGA) publication P-1 listed in Safety Standards.
1-3. Additional Symbols For Installation, Operation, And Maintenance

FIRE OR EXPLOSION hazard.
- Do not install or place unit on, over, or near combustible surfaces.
- Do not install unit near flammables.
- Do not overload building wiring – be sure power supply system is properly sized, rated, and protected to handle this unit.

FALLING EQUIPMENT can injure.
- Use lifting eye to lift unit only, NOT running gear, gas cylinders, or any other accessories.
- Use equipment of adequate capacity to lift and support unit.
- If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit.
- Keep equipment (cables and cords) away from moving vehicles when working from an aerial location.

OVERUSE can cause OVERHEATING
- Allow cooling period; follow rated duty cycle.
- Reduce current or reduce duty cycle before starting to weld again.
- Do not block or filter airflow to unit.

FLYING SPARKS can injure.
- Wear a face shield to protect eyes and face.
- Shape tungsten electrode only on grinder with proper guards in a safe location wearing proper face, hand, and body protection.
- Sparks can cause fires — keep flammables away.

STATIC (ESD) can damage PC boards.
- Put on grounded wrist strap BEFORE handling boards or parts.
- Use proper static-proof bags and boxes to store, move, or ship PC boards.

MOVING PARTS can injure.
- Keep away from moving parts.
- Keep away from pinch points such as drive rolls.

WELDING WIRE can injure.
- Do not press gun trigger until instructed to do so.
- Do not point gun toward any part of the body, other people, or any metal when threading welding wire.

BATTERY EXPLOSION can injure.
- Do not use welder to charge batteries or jump start vehicles unless it has a battery charging feature designed for this purpose.

MOVING PARTS can injure.
- Keep away from moving parts such as fans.
- Keep all doors, panels, covers, and guards closed and securely in place.
- Have only qualified persons remove doors, panels, covers, or guards for maintenance and troubleshooting as necessary.
- Reinstall doors, panels, covers, or guards when maintenance is finished and before reconnecting input power.

READ INSTRUCTIONS.
- Read and follow all labels and the Owner’s Manual carefully before installing, operating, or servicing unit. Read the safety information at the beginning of the manual and in each section.
- Use only genuine replacement parts from the manufacturer.
- Perform maintenance and service according to the Owner’s Manuals, industry standards, and national, state, and local codes.

H.F. RADIATION can cause interference.
- High-frequency (H.F.) can interfere with radio navigation, safety services, computers, and communications equipment.
- Have only qualified persons familiar with electronic equipment perform this installation.
- The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
- If notified by the FCC about interference, stop using the equipment at once.
- Have the installation regularly checked and maintained.
- Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.

ARC WELDING can cause interference.
- Electromagnetic energy can interfere with sensitive electronic equipment such as computers and computer-driven equipment such as robots.
- Be sure all equipment in the welding area is electromagnetically compatible.
- To reduce possible interference, keep weld cables as short as possible, close together, and down low, such as on the floor.
1-4. California Proposition 65 Warnings

⚠️ Welding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)

⚠️ This product contains chemicals, including lead, known to the state of California to cause cancer, birth defects, or other reproductive harm. Wash hands after use.

1-5. Principal Safety Standards

1-6. EMF Information

Electric current flowing through any conductor causes localized electric and magnetic fields (EMF). Welding current creates an EMF field around the welding circuit and welding equipment. EMF fields may interfere with some medical implants, e.g. pacemakers. Protective measures for persons wearing medical implants have to be taken. For example, restrict access for passers-by or conduct individual risk assessment for welders. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

1. Keep cables close together by twisting or taping them, or using a cable cover.

2. Do not place your body between welding cables. Arrange cables to one side and away from the operator.

3. Do not coil or drape cables around your body.

4. Keep head and trunk as far away from the equipment in the welding circuit as possible.

5. Connect work clamp to workpiece as close to the weld as possible.

6. Do not work next to, sit or lean on the welding power source.

7. Do not weld whilst carrying the welding power source or wire feeder.

About Implanted Medical Devices:
Implanted Medical Device wearers should consult their doctor and the device manufacturer before performing or going near arc welding, spot welding, gouging, plasma arc cutting, or induction heating operations. If cleared by your doctor, then following the above procedures is recommended.
SECTION 2 – CONSIGNES DE SÉCURITÉ – LIRE AVANT UTILISATION

Pour écarter les risques de blessure pour vous-même et pour autrui — lire, appliquer et ranger en lieu sûr ces consignes relatives aux précautions de sécurité et au mode opératoire.

2-1. Symboles utilisés

DANGER! – Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

Indique une situation dangereuse qui si on l’évite pas peut donner la mort ou des blessures graves. Les dangers possibles sont montrés par les symboles joints ou sont expliqués dans le texte.

NOTE – Indique des déclarations pas en relation avec des blessures personnelles.

Indique des instructions spécifiques.

Ce groupe de symboles veut dire Avertissement! Attention! DANGER DE CHOC ÉLECTRIQUE, PIECES EN MOUVEMENT, et PIECES CHAUDES. Consulter les symboles et les instructions ci-dessous y afférant pour les actions nécessaires afin d’éviter le danger.

2-2. Dangers relatifs au soudage à l’arc

Les symboles représentés ci-dessous sont utilisés dans ce manuel pour attirer l’attention et identifier les dangers possibles. En présence de l’un de ces symboles, prendre garde et suivre les instructions afférentes pour éviter tout risque. Les instructions en matière de sécurité indiquées ci-dessous ne constituent qu’un sommaire des instructions de sécurité plus complètes fournies dans les normes de sécurité énumérées dans la Section 2-5. Lire et observer toutes les normes de sécurité.

Seul un personnel qualifié est autorisé à installer, faire fonctionner, entretenir et réparer cet appareil.

Pendant le fonctionnement, maintenir à distance toutes les personnes, notamment les enfants de l’appareil.

UNE DÉCHARGE ÉLECTRIQUE peut entraîner la mort.

Le contact d’organes électriques sous tension peut provoquer des accidents mortels ou des brûlures graves. Le circuit de l’électrode et de la pièce est sous tension lorsque le courant est délivré à la sortie. Le circuit d’alimentation et les circuits internes de la machine sont également sous tension lorsque l’alimentation est sur Marche. Dans le mode de soudage avec du fil, le fil, le dérouleur, le bloc de commande du rouleau et toutes les parties métalliques en contact avec le fil sont sous tension électrique. Un équipement installé ou mis à la terre de manière incorrecte ou impropre constitue un danger.

Ne pas toucher aux pièces électriques sous tension.

Porter des gants isolants et des vêtements de protection secs et sans trous.

S’isoler de la pièce à couper et du sol en utilisant des housses ou des tapis assez grands afin d’éviter tout contact physique avec la pièce à couper ou le sol.

Ne pas servir de source électrique à courant électrique dans les zones humides, dans les endroits confinés ou là où on risque de tomber.

Se servir d’une source électrique à courant électrique UNIQUEMENT si le procédé de soudage le demande.

Si l’utilisation d’une source électrique à courant électrique s’avère nécessaire, se servir de la fonction de télécommande si l’appareil en est équipé.

D’autres consignes de sécurité sont nécessaires dans les conditions suivantes : risques électriques dans un environnement humide ou si l’on porte des vêtements mouillés ; sur des structures métalliques telles que sols, grilles ou échauffadages ; en position coincée comme assise, à genoux ou couchée ; ou s’il y a un risque élevé de contact inévitables ou accidentel avec la pièce à souder ou le sol. Dans ces conditions, utiliser les équipements suivants, dans l’ordre indiqué : 1) un poste à souder DC à tension constante (à fil), 2) un poste à souder DC manuel (électrode) ou 3) un poste à souder AC à tension à vide réduite. Dans la plupart des situations, l’utilisation d’un poste à souder DC à fil à tension constante est recommandée. En outre, ne pas travailler seul !

- Installez, mettez à la terre et utilisez correctement cet équipement conformément à son Manuel d’Utilisation et aux réglementations nationales, gouvernementales et locales.

- Toujours vérifier la terre du cordon d’alimentation. Vérifier s’assurer que le fil de terre du cordon d’alimentation est bien raccordé à la borne de terre du sectionneur ou que la fiche du cordon est raccordée à une prise correctement mise à la terre.

- En effectuant les raccordements d’entrée, fixer d’abord le conducteur de mise à la terre approprié et contre-vérifier les connexions.

- Les câbles doivent être exempts d’humidité, d’huile et de graisse; protégez-les contre les étincelles et les pièces métalliques chaudes.

- Vérifier fréquemment le cordon d’alimentation afin de s’assurer qu’il n’est pas altéré ou à nu, ou le remplacer immédiatement s’il l’est. Un fil à nu peut entraîner la mort.

- L’équipement doit être hors tension lorsqu’il n’est pas utilisé.

- Ne pas utiliser des câbles usés, endommagés, de grosseur insuffisante ou mal épissés.

- Ne pas enrouler les câbles autour du corps.

- Si la pièce soudée doit être mise à la terre, le faire directement avec un câble distinct.

- Ne pas toucher l’électrode quand on est en contact avec la pièce, la terre ou une électrode provenant d’une autre machine.

- Ne pas toucher des porte électrodes connectés à deux machines en même temps à cause de la présence d’une tension à vide doublée.

- N’utiliser qu’un matériel en bon état. Réparer ou remplacer sur-le-champ les pièces endommagées. Entretien l’appareil conformément à ce manuel.

- Porter un harnais de sécurité si l’on doit travailler au-dessus du sol.

- S’assurer que tous les panneaux et couvercles sont correctement en place.

- Fixer le câble de retour de façon à obtenir un bon contact métal-métal avec la pièce à souder ou la table de travail, le plus près possible de la soudure.

- Isoler la pince de masse quand pas mis à la pièce pour éviter le contact avec tout objet métallique.

- Ne pas raccorder plus d’une électrode ou plus d’un câble de masse à une même borne de sortie de soudage. Débrancher le câble pour le procédé non utilisé.
Il reste une TENSION DC NON NÉGLIGEABLE dans les sources de soudage onduleuse UNE FOIS l’alimentation coupée.

- Arrêter les convertisseurs, débrancher le courant électrique et décharger les condensateurs d’alimentation selon les instructions indiquées dans la partie Entretien avant de toucher les pièces.

LES PIÈCES CHAUDES peuvent provoquer des brûlures.
- Ne pas toucher à mains nues les parties chaudes.
- Prévoir une période de refroidissement avant de travailler à l’équipement.
- Ne pas toucher aux pièces chaudes, utiliser les outils recomman-dés et porter des gants de soudage et des vêtements épais pour éviter les brûlures.

LES FUMÉES ET LES GAZ peuvent être dangereux.
Le soudage génère des fumées et des gaz. Leur inhalation peut être dangereuse pour votre santé.
- Eloigner votre tête des fumées. Ne pas respirer les fumées.
- À l’intérieur, ventiler la zone et/ou utiliser une ventilation forcée au niveau de l’arc pour l’évacuation des fumées et des gaz de soudage.
- Si la ventilation est médiocre, porter un respirateur anti-vapeurs approuvé.
- Lire et comprendre les spécifications de sécurité des matériaux (MSDS) et les instructions du fabricant concernant les métaux, les consommables, les revêtements, les nettoyants et les dégraissateurs.
- Travailler dans un espace fermé seulement s’il est bien ventilé ou en portant un respirateur à alimentation d’air. Demander toujours à un surveillant dûment formé de se tenir à proximité. Des fumées et des gaz de soudage peuvent déplacer l’air et abaisser le niveau d’oxygène provoquant des blessures ou des accidents mortels. S’assurer que l’air de respiration ne présente aucun danger.
- Ne pas souder dans des endroits situés à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et la vitesse de dégazage peuvent projeter de la soudure vers l’opérateur.
- Ne pas souder des métaux munis d’un revêtement, tels que l’acier galvanisé, plaqué en plomb ou au cadmium à moins que le revête-ment n’ait été enlevé dans la zone de soudure, qu’il soit bien ventilé, et en portant un respirateur à alimentation d’air. Les revêtements et les métaux renfermant ces éléments peuvent dégager des fumées toxiques en cas de soudage.

LES RAYONS DE L’ARC peuvent provoquer des brûlures dans les yeux et sur la peau.
Le rayonnement de l’arc du procédé de soudage génère des rayons visibles et invisibles intenses (ultraviolets et infrarouges) susceptibles de provoquer des brûlures dans les yeux et sur la peau. Des étincelles sont projetées pendant la soudage.
- Porter un casque de soudage approuvé muni de verres filtrants approprié pour protéger visage et yeux pour protéger votre visage et vos yeux pendant le soudage ou pour regarder (voir ANSI Z49.1 et Z67.1 énuméré dans les normes de sécurité).
- Porter des lunettes de sécurité avec écrans latéraux même sous votre casque.
- Avoir recours à des écrans protecteurs ou à des rideaux pour protéger les autres contre les rayonnements les éblouissements et les étincelles ; prévenir toute personne sur les lieux de ne pas regarder l’arc.
- Porter des vêtements confectionnés avec des matières résistan-tes et ignifuges (cuir, coton lourd ou laine) et des bottes de protection.

LE SOUDAGE peut provoquer un incendie ou une explosion.
Le soudage effectué sur des conteneurs fermés tels que des réservoirs, tambours ou conduites peut provoquer leur éclatement. Des étincelles peuvent être projetées de l’arc de soudage. La projection d’étincelles, des pièces chaudes et des équipements chauds peut provoquer des incendies et des brûlures. Le contact accidentel de l’électrode avec des objets métalliques peut provoquer des étincelles, une explosion, un surchauffement ou un incendie. Avant de commencer le soudage, vérifier et s’assurer que l’endroit ne présente pas de danger.
- Déplacer toutes les substances inflammables à une distance de 10,7 m de l’arc de soudage. En cas d’impossibilité les recouvrir soigneusement avec des protections homologuées.
- Ne pas souder dans un endroit là où des étincelles peuvent tomber sur des substances inflammables.
- Se protéger et d’autres personnes de la projection d’étincelles et de métal chaud.
- Des étincelles et des matériaux chauds du soudage peuvent facilement passer dans d’autres zones en traversant de petites fissures et des ouvertures.
- Surveiller tout déclenchement d’incendie et tenir un extincteur à proximité.
- Le soudage effectué sur un plafond, plancher, paroi ou séparation peut déclencher un incendie de l’autre côté.
- Ne pas effectuer le soudage sur des conteneurs fermés tels que des réservoirs, tambours, ou conduites, à moins qu’ils n’aient été préparés correctement conformément à AWS F4.1 et AWS A6.0 (voir les Normes de Sécurité).
- Ne soudez pas si l’air ambiant est chargé de particules, gaz, ou va-peurs inflammables (vapeur d’essence, par exemple).
- Brancher le câble de masse sur la pièce le plus près possible de la zone de soudage pour éviter le transport du courant sur une longue distance par des chemins inconnus éventuels en provo-quant des risques d’électrocution, d’étincelles et d’incendie.
- Ne pas utiliser le poste de soudage pour dégeler des conduites ge-lées.
- En cas de non utilisation, enlever la baguette d’électrode du porte-électrode ou couper le fil à la pointe de contact.
- Porter des vêtements de protection dépourvus d’huile tels que des gants en cuir, une chemise en matériau lourd, des pantalons sans revers, des chaussures hautes et un couvre chef.
- Avant de souder, retirer toute substance combustible de vos po-ches telles qu’un allumeur au butane ou des allumettes.
- Une fois le travail achevé, assurez-vous qu’il ne reste aucune trace d’étincelles incandescentes ni de flammes.
- Utiliser exclusivement des fusibles ou coupe-circuits appropriés. Ne pas augmenter leur puissance; ne pas les poncer.
- Une fois le travail achevé, assurez-vous qu’il ne reste aucune trace d’étincelles incandescentes ni de flammes.
- Utiliser exclusivement des fusibles ou coupe-circuits appropriés. Ne pas augmenter leur puissance; ne pas les poncer.
- Suivre les recommandations dans OSHA 1910.252(a)(2)(iv) et NFPA 51B pour les travaux à chaud et avoir de la surveillance et un extincteur à proximité.

DES PIECES DE METAL ou DES SALETES peuvent provoquer des blessures dans les yeux.
- Le soudage, l’écaillement, le passage de la pièce à la brosse en fil de fer, et le meulage génèrent des étincelles et des particules métalliques volantes. Pendant la période de refroidissement des soudures, elles risquent de projeter du laitier.
- Porter des lunettes de sécurité avec écrans latéraux ou un écran facial.

OM-225 311 Page 6
LES ACCUMULATIONS DE GAZ

Risquent de provoquer des blessures ou même la mort.

- Fermer l'alimentation du gaz comprimé en cas de non utilisation.
- Veiller toujours à bien aérer les espaces confinés ou se servir d'un respirateur d'adduction d'air homologué.

LES BOUTEILLES PEUVENT exploser si elles sont endommagées.

Les bouteilles de gaz comprimé contiennent du gaz sous haute pression. Si une bouteille est endommagée, elle peut exploser. Du fait que les bouteilles de gaz font normalement partie du procédé de soudage, la manipulation avec précaution.

- Protéger les bouteilles de gaz comprimé d'une chaleur excessive, des chocs mécaniques, des dommages physiques, du laitier, des flammes ouvertes, des étincelles et des arcs.
- Placer les bouteilles debout en les fixant dans un support stationnaire ou dans un porte-bouteilles pour les empêcher de tomber ou de se renverser.
- Tenir les bouteilles éloignées des circuits de soudage ou autres circuits électriques.
- Ne jamais placer une torche de soudage sur une bouteille à gaz.
- Une électrode de soudage ne doit jamais entrer en contact avec une bouteille.
- Ne jamais souder une bouteille pressurisée – risque d'explosion.
- Utiliser seulement des bouteilles de gaz comprimé, régulateurs, tuyaux et raccords convenables pour cette application spécifique; les maintenir ainsi que les éléments associés en bon état.
- Détourner votre visage du détendeur-régulateur lorsque vous ouvrez la souape de la bouteille.
- Le couvercle du détendeur doit toujours être en place, sauf lorsque la bouteille est utilisée ou qu'elle est reliée pour usage ultérieur.
- Utiliser les équipements corrects, les bonnes procédures et suffisamment de personnes pour soulever et déplacer les bouteilles.
- Lire et suivre les instructions sur les bouteilles de gaz comprimé, l'équipement connexe et le dépliant P-1 de la CGA (Compressed Gas Association) mentionné dans les principales normes de sécurité.

Les CHAMPS ÉLECTROMAGNÉTIQUES (CEM)

peuvent affecter les implants médicaux.

- Les porteurs de stimulateurs cardiaques et autres implants médicaux doivent consulter leur médecin et le fabricant du dispositif avant de s’approcher de la zone où se déroule du soudage à l’arc, du soudage par points, du gougeage, de la découpe plasma ou une opération de chauffage par induction.

Le bruit peut endommager l’ouïe.

Le bruit des processus et des équipements peut affecter l’ouïe.

- Porter des protections approuvées pour les oreilles si le niveau sonore est trop élevé.

2-3. Dangers supplémentaires en relation avec l’installation, le fonctionnement et la maintenance

Risque d'incendie ou d'explosion.

- Ne pas placer l'appareil sur, au-dessus ou à proximité de surfaces inflammables.
- Ne pas installer l’appareil à proximité de produits inflammables.
- Ne pas surcharger l’installation électrique – s’assurer que l’alimentation est correctement dimensionnée et protégée avant de mettre l’appareil en service.

La chute de l’équipement peut provoquer des blessures.

- Utiliser l’anneau de levage uniquement pour soulever l’appareil, NON PAS les chariots, les bouteilles de gaz ou tout autre accessoire.
- Utiliser un équipement de levage de capacité suffisante pour lever l’appareil.
- En utilisant des fourches de levage pour déplacer l’unité, s’assurer que les fourches sont suffisamment longues pour dépasser du côté opposé de l’appareil.
- Tenir l’équipement (câbles et cordons) à distance des véhicules mobiles lors de toute opération en hauteur.
- Suivre les consignes du Manuel des applications pour l’équation delevage NIOSH révisée (Publication N°94–110) lors du levage manuelle de pièces ou équipements lourds.

L’emploi excessif peut surchauffer l’équipement.

- Prévoir une période de refroidissement ; respecter le cycle opératoire nominal.
- Réduire le courant ou le facteur de marche avant de poursuivre le soudage.
- Ne pas obstruer les passages d’air du poste.

Les étincelles projetées peuvent provoquer des blessures.

- Porter un écran facial pour protéger le visage et les yeux.
- Affûter l’électrode au tungstène uniquement à la meuleuse dotée de protecteurs. Cette manœuvre est à exécuter dans un endroit sûr lorsque l’on porte l’équipement homologué de protection du visage, des mains et du corps.
- Les étincelles risquent de causer un incendie – éloigner toute substance inflammable.

Les charges électrostatiques peuvent endommager les circuits imprimés.

- Établir la connexion avec la barrette de terre avant de manipuler des cartes ou des pièces.
- Utiliser des pochettes et des boîtes antistatiques pour stocker, déplacer ou expédier des cartes de circuits imprimés.
Les PIÈCES MOBILES peuvent causer des blessures.
- Ne pas s’approcher des organes mobiles.
- Ne pas s’approcher des points de coinement tels que des rouleaux de commande.

LES FILS DE SOUDAGE peuvent provoquer des blessures.
- Ne pas appuyer sur la gâchette avant d’en avoir reçu l’instruction.
- Ne pas diriger le pistolet vers soi, d’autres personnes ou toute pièce mécanique en engageant le fil de soudage.

L’EXPLOSION DE LA BATTERIE peut provoquer des blessures.
- Ne pas utiliser l’appareil de soudage pour charger des batteries ou faire démarrer des véhicules à l’aide de câbles de démarrage, sauf si l’appareil dispose d’une fonctionnalité de charge de batterie destinée à cet usage.

Les PIÈCES MOBILES peuvent causer des blessures.
- S’abstenir de toucher des organes mobiles tels que des ventilateurs.
- Maintenir fermés et verrouillés les portes, panneaux, recouvrements et dispositifs de protection.
- Lorsque cela est nécessaire pour des travaux d’entretien et de dépannage, faire retirer les portes, panneaux, recouvrements ou dispositifs de protection uniquement par du personnel qualifié.
- Remettre les portes, panneaux, recouvrements ou dispositifs de protection quand l’entretien est terminé et avant de rebrancher l’alimentation électrique.

LIRE LES INSTRUCTIONS.
- N’utiliser que les pièces de rechange recommandées par le constructeur.
- Effectuer l’entretien en respectant les manuels d’utilisation, les normes industrielles et les codes nationaux, d’état et locaux.

2-4. Proposition californienne 65 Avertissements

⚠️ Les équipements de soudage et de coupe produisent des fumées et des gaz qui contiennent des produits chimiques dont l’État de Californie reconnaît qu’ils provoquent des malformations congénitales et, dans certains cas, des cancers. (Code de santé et de sécurité de Californie, chapitre 25249.5 et suivants)

⚠️ Ce produit contient des produits chimiques, notamment du plomb, dont l’État de Californie reconnaît qu’ils provoquent des cancers, des malformations congénitales ou d’autres problèmes de procréation. Se laver les mains après utilisation.
2-5. Principales normes de sécurité

2-6. Informations relatives aux CEM

Le courant électrique qui traverse tout conducteur génère des champs électromagnétiques (CEM) à certains endroits. Le courant de soudage crée un CEM autour du circuit et du matériel de soudage. Les CEM peuvent créer des interférences avec certains implants médicaux comme des stimulateurs cardiaques. Des mesures de protection pour les porteurs d’implants médicaux doivent être prises: Limiter par exemple tout accès aux passants ou procéder à une évaluation des risques individuels pour les soudeurs. Tous les soudeurs doivent appliquer les procédures suivantes pour minimiser l’exposition aux CEM provenant du circuit de soudage:
1. Rassembler les câbles en les torsadant ou en les attachant avec du ruban adhésif ou avec une housse.
2. Ne pas se tenir au milieu des câbles de soudage. Disposer les câbles d’un côté et à distance de l’opérateur.
3. Ne pas courber et ne pas entourer les câbles autour de votre corps.
4. Maintenir la tête et le torse aussi loin que possible du matériel du circuit de soudage.
5. Connecter la pince sur la pièce aussi près que possible de la soudure.
6. Ne pas travailler à proximité d’une source de soudage, ni s’asseoir ou se pencher dessus.
7. Ne pas souder tout en portant la source de soudage ou le dévidoir.

En ce qui concerne les implants médicaux :
Les porteurs d’implants doivent d’abord consulter leur médecin avant de s’approcher des opérations de soudage à l’arc, de soudage par points, de gougeage, du coupe plasma ou de chauffage par induction. Si le médecin approuve, il est recommandé de suivre les procédures précédentes.
3-1. Specifications

A. 115 VAC Model w/Auto–Set™

<table>
<thead>
<tr>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output 115 V, 60 Hz, Single-Phase</th>
<th>KVA</th>
<th>KW</th>
<th>Weight W/Gun</th>
<th>Overall Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 A @ 18 Volts DC, 20% Duty Cycle</td>
<td>30 – 140</td>
<td>28</td>
<td>20</td>
<td>2.8</td>
<td>2.4</td>
<td>60 lb (27 kg)</td>
<td>Length: 17-1/2 in. (444 mm) Width: 10-5/8 in. (273 mm) Height: 15-3/4 in. (400 mm)</td>
</tr>
<tr>
<td>63 A @ 21 Volts DC, 20% Duty Cycle*</td>
<td></td>
<td></td>
<td>15*</td>
<td>2.1*</td>
<td>1.8*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wire Type And Dia</th>
<th>Solid</th>
<th>Stainless</th>
<th>Flux Cored</th>
<th>Wire Feed Speed Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>.024 - .030 in. (0.6 - 0.8 mm)</td>
<td>.023 - .030 in. (0.6 - 0.8 mm)</td>
<td>.030 - .035 in. (0.8 - 0.9 mm)</td>
<td>35 – 420 IPM (0.9 – 10.7 m/min) At No Load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 – 390 IPM (0.4 – 9.9 m/min) Feeding Wire</td>
<td></td>
</tr>
</tbody>
</table>

* CSA Rating

B. 230 VAC Model w/Auto–Set

<table>
<thead>
<tr>
<th>Rated Welding Output</th>
<th>Amperage Range</th>
<th>Maximum Open-Circuit Voltage DC</th>
<th>Amperes Input at Rated Load Output 230 V, 60 Hz, Single-Phase</th>
<th>KVA</th>
<th>KW</th>
<th>Weight W/Gun</th>
<th>Overall Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>135 A @ 22.5 Volts DC, 30% Duty Cycle At 60 Hz Input</td>
<td>30 – 180</td>
<td>31</td>
<td>21.7</td>
<td>5.0</td>
<td>4.1</td>
<td>72 lb (32.7 kg)</td>
<td>Length: 17-1/2 in. (444 mm) Width: 10-5/8 in. (273 mm) Height: 15-3/4 in. (400 mm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wire Type And Dia</th>
<th>Solid/ Stainless</th>
<th>Flux Cored</th>
<th>Wire Feed Speed Range w/Wire Feed Speed Tracking On</th>
</tr>
</thead>
<tbody>
<tr>
<td>.024 – .035 in. (0.6 – 0.9 mm)</td>
<td>.030 – .045 in. (0.8 – 1.2 mm)</td>
<td>95 – 565 IPM (2.4 – 14.4 m/min) At No Load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 – 540 IPM (1.5 – 13.7 m/min) Feeding Wire</td>
<td></td>
</tr>
</tbody>
</table>
3-2. Duty Cycle And Overheating

Duty Cycle is percentage of 10 minutes that unit can weld at rated load without overheating.
If unit overheats, thermostat(s) opens, output stops, and cooling fan runs. Wait fifteen minutes for unit to cool. Reduce amperage or duty cycle before welding.

NOTICE – Exceeding duty cycle can damage unit and void warranty.

A. 115 VAC Model

- 20% Duty Cycle at 90 Amps
- 2 Minutes Welding
- 8 Minutes Resting

- Duty Cycle at 115 VAC:
 - 20% Duty Cycle at 90 Amps
 - 30% Duty Cycle at 135 Amps, 60 Hz

B. 230 VAC Model

- 30% Duty Cycle at 135 Amps, 60 Hz
- 3 Minutes Welding
- 7 Minutes Resting

- Duty Cycle at 230 VAC:
 - 30% Duty Cycle at 135 Amps, 60 Hz

Overheating

- Duty Cycle at 115 VAC:
 - 20% Duty Cycle at 90 Amps
 - 3 Minutes Welding
 - 7 Minutes Resting

- Duty Cycle at 230 VAC:
 - 30% Duty Cycle at 135 Amps, 60 Hz
 - 3 Minutes Welding
 - 7 Minutes Resting

NOTICE

- Exceeding duty cycle can damage unit and void warranty.
3-3. Volt-Ampere Curves

A. 115 VAC Model

![Graph of Volt-Ampere Curves for 115 VAC Model]

B. 230 VAC Model

![Graph of Volt-Ampere Curves for 230 VAC Model]
4-1. Installing Welding Gun

Loosen knob. Insert end of gun through opening in front panel until it bottoms against drive assembly. Tighten knob.

Insert trigger plug into receptacle, and tighten threaded collar.

Close door.

Correct Incorrect

Connection hardware must be tightened with proper tools. Do not just hand tighten hardware. A loose electrical connection will cause poor weld performance and excessive heating of the work clamp.

4-2. Installing Work Clamp

Slide one insulating sleeve over work cable before connecting to clamp.

Slide both insulating sleeves over handles.

Be sure that gun end is tight against drive assembly.
4-3. Work Cable Routing Inside Unit

1 Work Cable
2 Output Terminal Block

Insert work cable through opening in front panel and route along back of front panel to output terminal block.

Close door.

4-4. Process/Polarity Table

<table>
<thead>
<tr>
<th>Process</th>
<th>Polarity</th>
<th>Cable Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW – Solid wire with shielding gas</td>
<td>DCEP – Reverse polarity</td>
<td>Connect to positive (+) output terminal</td>
</tr>
<tr>
<td>FCAW – Self-shielding wire – no shielding gas</td>
<td>DCEN – Straight Polarity</td>
<td>Connect to negative (−) output terminal</td>
</tr>
</tbody>
</table>

4-5. Changing Polarity

1 Lead Connections For Direct Current Electrode Positive (DCEP)
2 Lead Connections For Direct Current Electrode Negative (DCEN)

Connection hardware must be tightened with proper tools. Do not just hand tighten hardware. A loose electrical connection will cause poor weld performance and excessive heating at the terminal block.

Always read and follow wire manufacturer's recommended polarity, and see Section 4-4.

Close door.
4-6. Installing Gas Supply

Obtain gas cylinder and chain to running gear, wall, or other stationary support so cylinder cannot fall and break off valve.

1. Cap
2. Cylinder Valve
 Remove cap, stand to side of valve, and open valve slightly. Gas flow blows dust and dirt from valve. Close valve.
3. Cylinder
4. Regulator/Flowmeter
 Install so face is vertical.
5. Regulator/Flowmeter Gas Hose Connection
6. Welding Power Source Gas Hose Connection

Connect supplied gas hose between regulator/flowmeter gas hose connection, and fitting on rear of welding power source.

7. Flow Adjust
 Flow rate should be set when gas is flowing through welding power source and welding gun. Open feedhead pressure assembly so that wire will not feed. Press gun trigger to start gas flow.

 Typical flow rate is 20 cfh (cubic feet per hour). Check wire manufacturer's recommended flow rate.

After flow is set, close feedhead pressure assembly.
4-7. Serial Number And Rating Label Location

The serial number and rating information for this product is located on back. Use rating label to determine input power requirements and/or rated output. For future reference, write serial number in space provided on back cover of this manual.

4-8. Selecting A Location And Connecting Input Power For 115 VAC Model

- Grounded Receptacle
 - A 115 volt, 20 ampere individual branch circuit protected by time-delay fuses or circuit breaker is required.
- Plug From Unit
 - Select extension cord of 14 AWG for up to 50 ft (15 m) or 12 AWG for 50 up to 200 ft (61 m).

⚠️ Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.

⚠️ Do not move or operate unit where it could tip.
4-9. Selecting A Location And Connecting Input Power For 230 VAC Model

Installation must meet all National and Local Codes – have only qualified persons make this installation.

Disconnect and lockout/tag-out input power before connecting input conductors from unit.

Always connect green or green/yellow conductor to supply grounding terminal first, and never to a line terminal.

1 Rating Label
Supply correct input power.

2 Black And White Input Conductor (L1 And L2)

3 Green Or Green/Yellow Grounding Conductor

5 Disconnect Device (switch shown in the OFF position)

6 Disconnect Device Grounding Terminal

7 Disconnect Device Line Terminals

Connect green or green/yellow grounding conductor to disconnect device grounding terminal first.

Connect input conductors L1 and L2 to disconnect device line terminals.

8 Over-Current Protection
Select type and size of over-current protection using Section 4-10 (fused disconnect switch shown).

Close and secure door on disconnect device. Remove lockout/tagout device, and place switch in the On position.

9 Plug (NEMA 6-50P)

10 Receptacle (NEMA 6-50R)

Connect plug to receptacle.

Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.

Tools Needed:

Ref. 804 681-A / Ref. 802 443 / Ref. 802 085 / 803 766-B
4-10. Electrical Service Guide For 230 VAC Model

Failure to follow these electrical service guide recommendations could create an electric shock or fire hazard. These recommendations are for a dedicated branch circuit sized for the rated output and duty cycle of the welding power source.

<table>
<thead>
<tr>
<th>Input Voltage (V)</th>
<th>230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Amperes (A) At Rated Output</td>
<td>21.7</td>
</tr>
<tr>
<td>Max Recommended Standard Fuse Rating In Amperes</td>
<td></td>
</tr>
<tr>
<td>Time-Delay Fuses</td>
<td>25</td>
</tr>
<tr>
<td>Normal Operating Fuses</td>
<td>30</td>
</tr>
<tr>
<td>Min Input Conductor Size In AWG</td>
<td>14</td>
</tr>
<tr>
<td>Min Recommended Input Conductor Length In Feet (Meters)</td>
<td>61 (19)</td>
</tr>
<tr>
<td>Min Grounding Conductor Size In AWG</td>
<td>14</td>
</tr>
</tbody>
</table>

Reference: 2008 National Electrical Code (NEC) (including article 630)

1 If a circuit breaker is used in place of a fuse, choose a circuit breaker with time-current curves comparable to the recommended fuse.
2 "Time-Delay" fuses are UL class “RK5”. See UL 248.
3 “Normal Operating” (general purpose - no intentional delay) fuses are UL class “K5” (up to and including 60 amps), and UL class “H” (65 amps and above).
4 Conductor data in this section specifies conductor size (excluding flexible cord or cable) between the panelboard and the equipment per NEC Table 310.16. If a flexible cord or cable is used, minimum conductor size may increase. See NEC Table 400.5(A) for flexible cord and cable requirements.

4-11. Installing Wire Spool And Adjusting Hub Tension

When a slight force is needed to turn spool, tension is set.

Tools Needed:

1/2 in.
4-12. Threading Welding Wire

Tools Needed:

- Wire Spool
- Welding Wire
- Inlet Wire Guide
- Pressure Adjustment Knob
- Drive Roll
- Gun Conduit Cable

Lay gun cable out straight.

1. Open pressure assembly.
2. Pull and hold wire; cut off end.
3. Push wire thru guides into gun; continue to hold wire.

4. Use pressure indicator scale to set a desired drive roll pressure. Begin with a setting of 3. If necessary, make additional adjustments after trying this initial setting.

5. Remove gun nozzle and contact tip.
6. Turn power on.

Press gun trigger until wire comes out of gun. (Keep gun cable as straight as possible.)

Be sure that tip matches wire diameter. Reinstall contact tip and nozzle.

Feed wire to check drive roll pressure. Tighten knob enough to prevent slipping. Cut off wire. Close door.

Be sure that wire is positioned in proper drive roll groove and wire is laying in the groove. Close and tighten pressure assembly, and let go of wire.
4-13. Removing MIG Gun From Welding Power Source

- Cut Off End Of Wire
- Open Pressure Assembly
- Hold wire tightly to keep it from unraveling.
- Rewind Wire Onto Spool, Fasten End Of Wire To Spool
- Loosen Knob, Disconnect Gun Trigger Plug, And Pull Gun From Unit

Ref. 802 982-A / Ref. 243 861-A
4-14. Installing Switch For Optional Spool Gun

Tools Needed:

- 1/4 in. x 5/16 in.
- 9/16 in.

Turn Off unit, and disconnect input power.

For units prior to Serial No. LH210051N, use retrokit part no. 300409 for installing spool gun switch.

Remove wrapper from welding power source.

1. Welding Power Source Center Baffle
2. Snap-in Blank
3. Switch Assembly
4. Star Washer
5. Jam Nut

Remove top jam nut and star washer from switch (switch is equipped with two nuts, a jam nut and a backing nut).

Insert switch assembly into center baffle so that keyway in switch shaft is facing up.

Secure switch to center baffle with star washer and jam nut. Tighten jam nut enough to keep switch from rotating.

6. Wiring Harness Connectors
7. Switch Connectors
8. Label

Locate and separate connectors in wiring harness near label.

Connect switch connectors to matching connectors in wiring harness.

Install wrapper on unit.

Operation:

Place switch in the position with the spool gun symbol on the label for spool gun operation. Place switch in the position with the MIG gun symbol on the label for wire feeder/MIG (GMAW) gun operation.

When the switch is in the spool gun position, spool gun wire feed speed and voltage are controlled by welding power source controls.
4-15. Connecting Spool Gun To Millermatic 140/180

1. Drive Assembly
2. Spool Gun
3. Gun Securing Knob
4. Gun End
 Loosen thumbscrew. Insert end through opening until it bottoms against drive assembly. Tighten gun securing knob.
 Spool gun must be inserted completely to prevent leakage of shielding gas.
5. Gun Trigger Plug
 Insert plug into receptacle, and tighten threaded collar.
6. Spool Gun/MIG Gun Switch
 Place switch in Spool Gun position.
7. Polarity Changeover Terminal Block
 To make proper polarity connection, see welding power source Owner's Manual.

Close door.

Be sure that gun end is tight against drive assembly.

Incorrect
Gun Not Seated
Exposed O-rings will cause shielding gas leakage.

Correct
Gun Fully Seated
5-1. Controls For 115 VAC Model w/Auto-Set

1 Wire Speed Control
Turn control clockwise inside white scale (10-100) to increase wire feed speed. (see weld parameter chart in welding power source or Section 5-3).

2 Voltage Control
Turn control clockwise inside white scale (1-10) to increase voltage (see weld parameter chart in welding power source or Section 5-3).

3 Power Switch
To use Auto–Set mode, rotate Wire Speed control inside blue area for the applicable Weld Wire Diameter. Auto–Set light will turn on, and the unit will provide the appropriate wire feed speed for the material thickness selected using the Voltage control (see Section 5-3).

4 Over Temperature Light
If unit overheats, light flashes and output stops. Allow unit to cool before resuming operation.

5 Gun Trigger Receptacle

6 Auto–Set Light
Rotate Voltage control inside blue scale (24 ga to 1/8 in.) for the applicable material thickness and the unit will provide the appropriate voltage within the range of the selected material thickness and the selected Weld Wire Diameter (see Section 5-3).
5-2. Controls For 230 VAC Model w/Auto-Set

1. Wire Speed Control
 Turn control clockwise inside white scale (10-100) to increase wire feed speed. (see weld parameter chart in welding power source or Section 5-4).

2. Voltage Control
 Turn control clockwise inside white scale (1-10) to increase voltage (see weld parameter chart in welding power source or Section 5-4).

3. Power Switch

4. Over Temperature Light
 If unit overheats, light flashes and output stops. Allow unit to cool before resuming operation.

5. Gun Trigger Receptacle

6. Auto-Set Light
 To use Auto-Set mode, rotate Wire Speed control inside blue/green area for the applicable Weld Wire Diameter. Auto-Set light will turn on, and the unit will provide the appropriate wire feed speed for the material thickness selected using the Voltage control (see Section 5-4).
 Rotate Voltage control inside blue/green scale (24 ga to 5/16 in.) for the applicable material thickness and the unit will provide the appropriate voltage within the range of the selected material thickness and the selected Weld Wire Diameter (see Section 5-4).

Blue shaded areas are for .030 wire applications. Green shaded areas are for .024 wire applications.
Millermatic® 140 Auto-Set™

Auto-Set™ - SIMPLE SETUP FOR WELDING MILD STEEL

Example: .030" diameter wire, welding 18 ga. material.

1. **Activate Auto-Set™** by selecting the diameter of the welding wire with the WIRE SPEED knob. Auto-Set™ light comes on.

2. **Select thickness of the mild steel being welded with the VOLTAGE knob.** Setup complete.

USE 75% ARGON / 25% CO2 SHIELDING GAS

Weld Parameter Chart For 115 VAC Model w/Auto-Set

<table>
<thead>
<tr>
<th>Material</th>
<th>Suggested Wire Types, Polarity</th>
<th>Suggested Shielding Gases (Flow Rate of 20 cfm)</th>
<th>Wire Sizes (Diameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td></td>
<td>C2H2, Gas Mixture 75% Ar / 25% CO2</td>
<td>24 ga (0.024") 0.6 mm</td>
</tr>
<tr>
<td>Solid Wire</td>
<td>ER70S-6 (DCEP)</td>
<td></td>
<td>2/40</td>
</tr>
<tr>
<td>.024" (0.6 mm)</td>
<td></td>
<td>3/50, 4/50</td>
<td>4/65</td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td></td>
<td></td>
<td>5/55, 5/60</td>
</tr>
<tr>
<td>.035" (0.9 mm)</td>
<td></td>
<td></td>
<td>6/50, 10/65</td>
</tr>
<tr>
<td>Solid Wire</td>
<td>ER70S-4 (DCEP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.024" (0.6 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.035" (0.9 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Core</td>
<td>E71T-11 (DCEN)</td>
<td>No Shielding Gas required. Good for windy or outdoor applications</td>
<td></td>
</tr>
<tr>
<td>.024" (0.6 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.035" (0.9 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Stainless Steel (DCEP)</td>
<td>Tri-Mix 90% He / 7.5% Ar / 2.5% CO2</td>
<td></td>
</tr>
<tr>
<td>.024" (0.6 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting Wire, Gas and Control Settings for Aluminum with optional Spool Gun. Order part no. 300371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum 4043ER</td>
<td>100% Argon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.030" (0.8 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.035" (0.9 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Settings are approximate. Adjust as required.

-- Means not recommended.

Thicker materials can be welded using proper technique, joint preparation and multiple passes.

IMPORTANT: Match drive roll groove to diameter of wire being used. Set Tension knob setting to 3 at start. Adjust tension per instructions in the manual.

Changing Polarity

- **DCEP** Electrode Positive For Solid Wire
- **DCEN** Electrode Negative For Flux Core Wire

Manual Setup
Refer to chart below to select Voltage and Wire Speed based on thickness of metal being welded.

Changing Polarity

| DCEP | Electrode Positive For Solid Wire |
| Work Clamp Lead | Wire Drive Lead |

| DCEN | Electrode Negative For Flux Core Wire |
| Work Clamp Lead | Wire Drive Lead |

Weld Parameter Chart For 230 VAC Model w/ Auto-Set

Material | Suggested Wire Types, Polarity | Suggested Shielding Gases (Flow Rate of 30-35 cfm) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>Solid Wire ER70S-6 (DCEP)</td>
<td>75% Ar / 25% CO₂, Gas Mixture 100% Ar, 75% Ar / 25% CO₂, No Shielding Gas Required. Good for windy or outdoor applications, Stainless Steel ER70S-6 (DCEP)</td>
</tr>
<tr>
<td></td>
<td>.024" (0.6 mm)</td>
<td>2/28 2.5/30 2.5/30 2.5/35 3/50 3.5/65 4.5/80 5.5/100</td>
</tr>
<tr>
<td></td>
<td>.030" (0.8 mm)</td>
<td>2/20 2.5/25 2.5/25 3/35 3/40 3.5/45 4.5/65 5.5/85 6.5/95 7.5/100</td>
</tr>
<tr>
<td></td>
<td>.035" (0.9 mm)</td>
<td>--- 2.5/20 2.5/20 3/25 3.5/30 3.5/40 4.5/55 5.5/65 6.5/70 7.5/80</td>
</tr>
<tr>
<td></td>
<td>.045" (1.2 mm)</td>
<td>--- --- --- --- 3.5/35 4/45 4/65 5/55 6/75 7.5/85</td>
</tr>
<tr>
<td></td>
<td>.024" (0.6 mm)</td>
<td>--- --- --- --- 2/27 2/75 4/75 5/80 7/100</td>
</tr>
<tr>
<td></td>
<td>.030" (0.8 mm)</td>
<td>--- --- --- --- 2.5/70 4/65 5/70 8/85 10/85</td>
</tr>
<tr>
<td></td>
<td>.035" (0.9 mm)</td>
<td>--- --- --- --- 2.5/70 4/65 5/70 8/85 10/85</td>
</tr>
</tbody>
</table>

Selecting Wire, Gas and Control Settings for Aluminum with optional Spool Gun. Order part no. 300371
- .030" Argon
- .035" Argon

Note: Settings are approximate. Adjust as required. **Important:** Match drive roll groove to diameter of wire being used. Set Tension knob setting to 3 at start. Adjust tension per instructions in the manual.

- Thicker materials can be welded using proper technique, joint preparation and multiple passes.
SECTION 6 – MAINTENANCE & TROUBLESHOOTING

6-1. Routine Maintenance

<table>
<thead>
<tr>
<th></th>
<th>Every 3 Months</th>
<th>Every 6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreadable Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld Terminals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld Cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside Unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Disconnect power before maintaining.
- Maintain more often during severe conditions.

- ▼ = Check
- ◇ = Change
- ◎ = Clean
- ☆ = Replace

- To be done by Factory Authorized Service Agent

6-2. Overload Protection

![Diagram of Overload Protection]

1 Supplementary Protector CB1
CB1 protects unit from overload. If CB1 opens, unit shuts down. Reset supplementary protector.

6-3. Drive Motor Protection And Tip Saver/Short Circuit Protection

A. Drive Motor Protection

Drive motor protection circuit protects drive motor from overload. If drive motor becomes inoperative, cycle unit power off and back on again.

B. Tip Saver/Short Circuit Protection

The tip saver/short circuit protection extends contact tip life and protects internal components from damage. If contact tip is shorted to workpiece, the unit shuts down the welding output, but the fan continues to run. To resume operation, release gun trigger to reset unit. If the contact tip has stuck to the workpiece, release gun trigger, turn off unit, and remove contact tip from workpiece. Check contact tip and replace if damaged. Turn on unit to continue operation.
6-4. Changing Drive Roll Or Wire Inlet Guide

1 Inlet Wire Guide
Remove guide by pressing on barbed area or cutting off one end near housing and pulling it out of hole. Push new guide into hole from rear until it snaps in place.

2 Drive Roll
The drive roll consists of two different sized grooves. The stamped markings on the end surface of the drive roll refers to the groove on the opposite side of the drive roll. The groove closest to the motor shaft is the proper groove to thread (see Section 4-12).

3 Retaining Pin
To secure drive roll, locate open slot and push drive roll completely over retaining pin, then rotate drive roll 1/4 turn to closed slot.
Troubleshooting Table

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No weld output; wire does not feed; fan does not run.</td>
<td>Secure power cord plug in receptacle (see Section 4-8 or 4-9).</td>
</tr>
<tr>
<td></td>
<td>Replace building line fuse or reset circuit breaker if open.</td>
</tr>
<tr>
<td></td>
<td>Place Power switch in On position (see Section 5-1 or 5-2).</td>
</tr>
<tr>
<td></td>
<td>Reset welding power source supplementary protector if open.</td>
</tr>
<tr>
<td>No weld output; wire does not feed; fan motor continues to run.</td>
<td>Thermostat TP1 open (overheating). Allow fan to run with gun trigger switch off; thermostat closes when unit has cooled (see Section 5-1 or 5-2).</td>
</tr>
<tr>
<td></td>
<td>Secure gun trigger plug (see Section 4-1).</td>
</tr>
<tr>
<td></td>
<td>Release gun trigger and cycle unit power off and back on again.</td>
</tr>
<tr>
<td>No weld output; wire feeds.</td>
<td>Connect work clamp to get good metal to metal contact.</td>
</tr>
<tr>
<td></td>
<td>Check for loose connections.</td>
</tr>
<tr>
<td></td>
<td>Replace gun contact tip (see gun Owner’s Manual).</td>
</tr>
<tr>
<td></td>
<td>Check for proper polarity connections (see Section 4-5).</td>
</tr>
<tr>
<td></td>
<td>Check thumbscrew securing gun end to feed head adapter and tighten if necessary.</td>
</tr>
<tr>
<td>Low weld output.</td>
<td>Connect unit to proper input voltage or check for low line voltage.</td>
</tr>
<tr>
<td></td>
<td>Place Power switch in On position (see Section 5-1 or 5-2).</td>
</tr>
<tr>
<td>Electrode wire feeding stops during welding.</td>
<td>Straighten gun cable and/or replace damaged parts.</td>
</tr>
<tr>
<td></td>
<td>Adjust drive roll pressure (see Section 4-12).</td>
</tr>
<tr>
<td></td>
<td>Change to proper drive roll groove (see Section 6-4).</td>
</tr>
<tr>
<td></td>
<td>Readjust hub tension (see Section 4-11).</td>
</tr>
<tr>
<td></td>
<td>Be sure that wire is positioned in proper drive roll groove and wire is laying in the groove.</td>
</tr>
<tr>
<td></td>
<td>Replace contact tip if blocked (see gun Owner’s Manual). Oversized tip may be required for some wires.</td>
</tr>
<tr>
<td></td>
<td>Clean or replace wire inlet guide or liner if dirty or plugged (see Section 6-4 or gun Owner’s Manual).</td>
</tr>
<tr>
<td></td>
<td>Replace drive roll or pressure bearing if worn or slipping (see Section 6-4).</td>
</tr>
<tr>
<td></td>
<td>Secure gun trigger plug (see Section 4-1).</td>
</tr>
<tr>
<td></td>
<td>Check and clear any restrictions at drive assembly and liner (see Section 6-4 or gun Owner’s Manual).</td>
</tr>
<tr>
<td></td>
<td>Release gun trigger and allow gun and motor protection circuitry to reset.</td>
</tr>
<tr>
<td></td>
<td>Have nearest Factory Authorized Service Agent check drive motor.</td>
</tr>
</tbody>
</table>
Figure 7-1. Circuit Diagram
8-1. Typical MIG Process Connections

⚠ Weld current can damage electronic parts in vehicles. Disconnect both battery cables before welding on a vehicle. Place work clamp as close to the weld as possible.
8-2. Typical MIG Process Control Settings

These settings are guidelines only. Material and wire type, joint design, fitup, position, shielding gas, etc. affect settings. Test welds to be sure they comply to specifications.

Material thickness determines weld parameters.

Convert Material Thickness to Amperage (A)

(0.001 in. = 1 ampere)
0.125 in. = 125 A

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Amperage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.023 in.</td>
<td>30 – 90 A</td>
</tr>
<tr>
<td>0.030 in.</td>
<td>40 – 145 A</td>
</tr>
<tr>
<td>0.035 in.</td>
<td>50 – 180 A</td>
</tr>
</tbody>
</table>

Select Wire Size

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Recommendation</th>
<th>Wire Speed (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.023 in.</td>
<td>3.5 in. per ampere</td>
<td>3.5 x 125 A = 437 ipm</td>
</tr>
<tr>
<td>0.030 in.</td>
<td>2 in. per ampere</td>
<td>2 x 125 A = 250 ipm</td>
</tr>
<tr>
<td>0.035 in.</td>
<td>1.6 in. per ampere</td>
<td>1.6 x 125 A = 200 ipm</td>
</tr>
</tbody>
</table>

Select Wire Speed (Amperage)

125 A based on 1/8 in. material thickness

ipm = inches per minute

Select Voltage

Low voltage: wire stubs into work
High voltage: arc is unstable (spatter)
Set voltage midway between high/low voltage

Voltage controls height and width of weld bead.

Wire speed (amperage) controls weld penetration (wire speed = burn-off rate)
8-3. Holding And Positioning Welding Gun

Welding wire is energized when gun trigger is pressed. Before lowering helmet and pressing trigger, be sure wire is no more than 1/2 in. (13 mm) past end of nozzle, and tip of wire is positioned correctly on seam.

1	Hold Gun and Control Gun Trigger
2	Workpiece
3	Work Clamp
4	Electrode Extension (Stickout)
	1/4 to 1/2 in. (6 To 13 mm)
5	Cradle Gun and Rest Hand on Workpiece

Groove Welds

- **End View of Work Angle**: 90°
- **Side View of Gun Angle**: 0°-15°

Fillet Welds

- **End View of Work Angle**: 45°
- **Side View of Gun Angle**: 0°-15°
8-4. Conditions That Affect Weld Bead Shape

Weld bead shape depends on gun angle, direction of travel, electrode extension (stickout), travel speed, thickness of base metal, wire feed speed (weld current), and voltage.
8-5. Gun Movement During Welding

Normally, a single stringer bead is satisfactory for most narrow groove weld joints; however, for wide groove weld joints or bridging across gaps, a weave bead or multiple stringer beads works better.

1. Stringer Bead – Steady Movement Along Seam
2. Weave Bead – Side To Side Movement Along Seam
3. Weave Patterns
 Use weave patterns to cover a wide area in one pass of the electrode.

8-6. Poor Weld Bead Characteristics

1. Large Spatter Deposits
2. Rough, Uneven Bead
3. Slight Crater During Welding
4. Bad Overlap
5. Poor Penetration

8-7. Good Weld Bead Characteristics

1. Fine Spatter
2. Uniform Bead
3. Moderate Crater During Welding
 Weld a new bead or layer for each 1/8 in. (3.2 mm) thickness in metals being welded.
4. No Overlap
5. Good Penetration into Base Metal
8-8. Troubleshooting – Excessive Spatter

Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed speed too high.</td>
<td>Select lower wire feed speed.</td>
</tr>
<tr>
<td>Voltage too high.</td>
<td>Select lower voltage range.</td>
</tr>
<tr>
<td>Electrode extension (stickout) too long.</td>
<td>Use shorter electrode extension (stickout).</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td>Incorrect polarity.</td>
<td>Check polarity required by welding wire, and change to correct polarity at welding power source.</td>
</tr>
</tbody>
</table>

8-9. Troubleshooting – Porosity

Porosity – small cavities or holes resulting from gas pockets in weld metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient shielding gas at welding arc.</td>
<td>Increase flow of shielding gas at regulator/flowmeter and/or prevent drafts near welding arc.</td>
</tr>
<tr>
<td></td>
<td>Remove spatter from gun nozzle.</td>
</tr>
<tr>
<td></td>
<td>Check gas hoses for leaks.</td>
</tr>
<tr>
<td></td>
<td>Place nozzle 1/4 to 1/2 in. (6-13 mm) from workpiece.</td>
</tr>
<tr>
<td></td>
<td>Hold gun near bead at end of weld until molten metal solidifies.</td>
</tr>
<tr>
<td>Wrong gas.</td>
<td>Use welding grade shielding gas; change to different gas.</td>
</tr>
<tr>
<td>Dirty welding wire.</td>
<td>Use clean, dry welding wire.</td>
</tr>
<tr>
<td></td>
<td>Eliminate pick up of oil or lubricant on welding wire from feeder or liner.</td>
</tr>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, coatings, and dirt from work surface before welding.</td>
</tr>
<tr>
<td></td>
<td>Use a more highly deoxidizing welding wire (contact supplier).</td>
</tr>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in. (13 mm) beyond nozzle.</td>
</tr>
</tbody>
</table>

8-10. Troubleshooting – Excessive Penetration

Excessive Penetration – weld metal melting through base metal and hanging underneath weld.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
</tbody>
</table>
8-11. Troubleshooting – Lack Of Penetration

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper joint preparation.</td>
<td>Material too thick. Joint preparation and design must provide access to bottom of groove while maintaining proper welding wire extension and arc characteristics.</td>
</tr>
<tr>
<td>Improper weld technique.</td>
<td>Maintain normal gun angle of 0 to 15 degrees to achieve maximum penetration.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher wire feed speed and/or select higher voltage range.</td>
</tr>
<tr>
<td>Incorrect polarity.</td>
<td>Check polarity required by welding wire, and change to correct polarity at welding power source.</td>
</tr>
</tbody>
</table>

8-12. Troubleshooting – Incomplete Fusion

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece dirty.</td>
<td>Remove all grease, oil, moisture, rust, paint, undercoating, and dirt from work surface before welding.</td>
</tr>
<tr>
<td>Insufficient heat input.</td>
<td>Select higher voltage range and/or adjust wire feed speed.</td>
</tr>
<tr>
<td>Improper welding technique.</td>
<td>Place stringer bead in proper location(s) at joint during welding.</td>
</tr>
<tr>
<td></td>
<td>Adjust work angle or widen groove to access bottom during welding.</td>
</tr>
<tr>
<td></td>
<td>Momentarily hold arc on groove side walls when using weaving technique.</td>
</tr>
<tr>
<td></td>
<td>Keep arc on leading edge of weld puddle.</td>
</tr>
<tr>
<td></td>
<td>Use correct gun angle of 0 to 15 degrees.</td>
</tr>
</tbody>
</table>

8-13. Troubleshooting – Burn-Through

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Select lower voltage range and reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase and/or maintain steady travel speed.</td>
</tr>
</tbody>
</table>
8-14. Troubleshooting – Waviness Of Bead

Waviness Of Bead – weld metal that is not parallel and does not cover joint formed by base metal.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding wire extends too far out of nozzle.</td>
<td>Be sure welding wire extends not more than 1/2 in. (13 mm) beyond nozzle.</td>
</tr>
<tr>
<td>Unsteady hand.</td>
<td>Support hand on solid surface or use two hands.</td>
</tr>
</tbody>
</table>

8-15. Troubleshooting – Distortion

Distortion – contraction of weld metal during welding that forces base metal to move.

<table>
<thead>
<tr>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive heat input.</td>
<td>Use restraint (clamp) to hold base metal in position.</td>
</tr>
<tr>
<td></td>
<td>Make tack welds along joint before starting welding operation.</td>
</tr>
<tr>
<td></td>
<td>Select lower voltage range and/or reduce wire feed speed.</td>
</tr>
<tr>
<td></td>
<td>Increase travel speed.</td>
</tr>
<tr>
<td></td>
<td>Weld in small segments and allow cooling between welds.</td>
</tr>
</tbody>
</table>
8-16. Common MIG Shielding Gases

This is a general chart for common gases and where they are used. Many different combinations (mixtures) of shielding gases have been developed over the years. The most commonly used shielding gases are listed in the following table.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Application</th>
<th>Spray Arc Steel</th>
<th>Short Circuiting Steel</th>
<th>Short Circuiting Stainless Steel</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Argon + 25% CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>80% or greater Argon + balance CO₂ or Oxygen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tri-Mix²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

1 Limited short circuiting use

2 90% HE + 7-1/2% AR + 2-1/2% CO₂

8-17. Troubleshooting Guide For Semiautomatic Welding Equipment

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire feed motor operates, but wire does not feed.</td>
<td>Too little pressure on wire feed rolls.</td>
<td>Increase pressure setting on wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Incorrect wire feed rolls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wire spool brake pressure too high.</td>
<td>Decrease brake pressure on wire spool.</td>
</tr>
<tr>
<td></td>
<td>Restriction in the gun and/or assembly.</td>
<td>Check and replace cable, gun, and contact tip if damaged. Check size of contact tip and cable liner, replace if necessary.</td>
</tr>
<tr>
<td>Wire curling up in front of the wire feed rolls (bird nesting).</td>
<td>Too much pressure on wire feed rolls.</td>
<td>Decrease pressure setting on wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Incorrect cable liner or gun contact tip size.</td>
<td>Check size of contact tip and check cable liner length and diameter, replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Gun end not inserted into drive housing properly.</td>
<td>Loosen gun securing bolt in drive housing and push gun end into housing just enough so it does not touch wire feed rolls.</td>
</tr>
<tr>
<td></td>
<td>Dirty or damaged (kinked) liner.</td>
<td>Replace liner.</td>
</tr>
<tr>
<td>Wire feeds, but no gas flows.</td>
<td>Gas cylinder empty.</td>
<td>Replace empty gas cylinder.</td>
</tr>
<tr>
<td></td>
<td>Gas nozzle plugged.</td>
<td>Clean or replace gas nozzle.</td>
</tr>
<tr>
<td></td>
<td>Gas cylinder valve not open or flowmeter not adjusted.</td>
<td>Open gas valve at cylinder and adjust flow rate.</td>
</tr>
<tr>
<td></td>
<td>Restriction in gas line.</td>
<td>Check gas hose between flowmeter and wire feeder, and gas hose in gun and cable assembly.</td>
</tr>
<tr>
<td></td>
<td>Loose or broken wires to gas solenoid.</td>
<td>Have Factory Authorized Service Agent repair wiring.</td>
</tr>
<tr>
<td></td>
<td>Gas solenoid valve not operating.</td>
<td>Have Factory Authorized Service Agent replace gas solenoid valve.</td>
</tr>
<tr>
<td></td>
<td>Incorrect primary voltage connected to welding power source.</td>
<td>Check primary voltage and relink welding power source for correct voltage.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Welding arc not stable</td>
<td>Wire slipping in drive rolls.</td>
<td>Adjust pressure setting on wire feed rolls. Replace worn drive rolls if necessary.</td>
</tr>
<tr>
<td></td>
<td>Wrong size gun liner or contact tip.</td>
<td>Match liner and contact tip to wire size and type.</td>
</tr>
<tr>
<td></td>
<td>Incorrect voltage setting for selected wire feed speed on welding power source.</td>
<td>Readjust welding parameters.</td>
</tr>
<tr>
<td></td>
<td>Loose connections at the gun weld cable or work cable.</td>
<td>Check and tighten all connections.</td>
</tr>
<tr>
<td></td>
<td>Gun in poor shape or loose connection inside gun.</td>
<td>Repair or replace gun as necessary.</td>
</tr>
</tbody>
</table>
9-1. Recommended Spare Parts

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>246 372</td>
<td>NOZZLE, slip type .500 orf flush</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>087 299</td>
<td>TIP, contact scr .023 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>000 067</td>
<td>TIP, contact scr .030 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>000 068</td>
<td>TIP, contact scr .035 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>000 069</td>
<td>TIP, contact scr .045 wire x 1.125</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>194 010</td>
<td>LINER, monocoil .023/.025 wire x 15f (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>194 011</td>
<td>LINER, monocoil .030/.035 wire x 15f (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>194 012</td>
<td>LINER, monocoil .035/.045 wire x 15f (consisting of)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>079 975</td>
<td>O-RING, .187 ID x .103CS rbr</td>
<td>1</td>
</tr>
</tbody>
</table>

OPTIONAL

To maintain the factory original performance of your equipment, use only Manufacturer's Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.

9-2. Optional Drive Rolls

For All Feed Head Assemblies

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>WIRE DIAMETER INCHES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 179</td>
<td>.024 (.6) and .030 – .035 (.8 and .9)</td>
</tr>
<tr>
<td>202 926</td>
<td>.030/.035 (.8 and .9) and .045 (1.2 VK Groove)</td>
</tr>
</tbody>
</table>

9-3. Options

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>248 282</td>
<td>M-100 Replacement Gun</td>
<td>10 ft length/.030-.035 wire size</td>
</tr>
</tbody>
</table>
TRUE BLUE® WARRANTY

Effective January 1, 2012

(Equipment with a serial number prefix of MC or newer)

This limited warranty supersedes all previous Miller warranties and is exclusive with no other guarantees or warranties expressed or implied.

Warranty Questions?

Call 1-800-4-A-MILLER for your local Miller distributor.

Your distributor also gives you...

Service

You always get the fast, reliable response you need. Most replacement parts can be in your hands in 24 hours.

Support

Need fast answers to the tough welding questions? Contact your distributor. The expertise of the distributor and Miller is there to help you, every step of the way.

LIMITED WARRANTY – Subject to the terms and conditions below, Miller Electric Mfg. Co., Appleton, Wisconsin, warrants to its original retail purchaser that new Miller equipment sold after the effective date of this limited warranty is free of defects in material and workmanship at the time it is shipped by Miller. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS.

Within the warranty periods listed below, Miller will repair or replace any warranted parts or components that fail due to such defects in material or workmanship. Miller must be notified in writing within thirty (30) days of such defect or failure, at which time Miller will provide instructions on the warranty claim procedures to be followed.

Miller shall honor warranty claims on warranted equipment listed below in the event of such a failure within the warranty time periods. All warranty time periods start on the delivery date of the equipment to the original end-user purchaser, and not to exceed one year after the equipment is shipped to a North American distributor or eighteen months after the equipment is shipped to an International distributor.

1. **5 Years Parts — 3 Years Labor**
 - Original Main Power Rectifiers Only to Include SCRs, Diodes, and Discrete Rectifier Modules
 - Inverter Power Sources (Unless Otherwise Stated)
 - Plasma Arc Cutting Power Sources
 - Process Controllers
 - Semi-Automatic and Automatic Wire Feeders
 - Smith 30 Series Flowgauge and Flowmeter Regulators (No Labor)
 - Transformer/Rectifier Power Sources
 - Water Coolant Systems (Integrated)

2. **3 Years — Parts and Labor**
 - Engine Driven Welding Generators
 (NOTE: Engine Driven Welding Generators are warranted separately by the engine manufacturer.)
 - Inverter Power Sources (Unless Otherwise Stated)
 - Plasma Arc Cutting Power Sources
 - Process Controllers
 - Semi-Automatic and Automatic Wire Feeders
 - Smith 30 Series Flowgauge and Flowmeter Regulators (No Labor)
 - Transformer/Rectifier Power Sources
 - Water Coolant Systems (Integrated)

3. **2 Years — Parts**
 - Auto-Darkening Helmet Lenses (No Labor)

4. **1 Year — Parts and Labor Unless Specified**
 - Automatic Motion Devices
 - CoolBelt and CoolBand Blower Unit (No Labor)
 - External Monitoring Equipment and Sensors
 - Field Options
 (NOTE: Field options are covered for the remaining warranty period of the product they are installed in, or for a minimum of one year — whichever is greater.)
 - Flowgauge and Flowmeter Regulators (No Labor)
 - RFCS Foot Controls (Except RFCS-RJ45)
 - Fume Extractors
 - HF Units
 - ICE/XT Plasma Cutting Torches (No Labor)
 - Induction Heating Power Sources, Coolers
 (NOTE: Digital Recorders are Warranted Separately by the Manufacturer.)
 - Load Banks
 - Motor Driven Guns (w/exception of Spoolmate Spoolguns)
 - PAPR Blower Unit (No Labor)
 - Positioners and Controllers
 - Remote Controls and RFCS-RJ45
 - Running Gear/Trailers
 - Spot Welders
 - Subarc Wire Drive Assemblies
 - Water Coolant Systems (Non-Integrated)
 - Weldcraft-Branded TIG Torches (No Labor)
 - Wireless Remote Foot/Hand Controls and Receivers
 - Work Stations/Weld Tables (No Labor)

5. **6 Months — Parts**
 - Batteries
 - Bernard Guns (No Labor)
 - Tregaskiss Guns (No Labor)

6. **90 Days — Parts**
 - Accessories (Kits)
 - Canvas Covers
 - Induction Heating Coils and Blankets, Cables, and Non-Electronic Controls
 - M-Guns
 - Mig Guns and Subarc (SAW) Guns
 - Remote Controls and RFCS-RJ45
 - Replacement Parts (No labor)
 - Roughneck Guns
 - Spoolmate Spoolguns

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, relays, work station table tops and welding curtains, or parts that fail due to normal wear. **(Exception: brushes and relays are covered on all engine-driven products.)**

2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.

3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards, or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B., Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, THE REMEDIES PROVIDED HEREIN ARE THE SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL MILLER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFIT), WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

Any express warranty not provided herein and any implied warranty, guaranty or representation as to performance, and any remedy for breach of contract tort or any other legal theory which, but for this provision, might arise by implication, operation of law, custom of trade or course of dealing, including any implied warranty of merchantability or fitness for particular purpose, with respect to any and all equipment furnished by Miller is excluded and disclaimed by Miller.

Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, relays, work station table tops and welding curtains, or parts that fail due to normal wear. **(Exception: brushes and relays are covered on all engine-driven products.)**

2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.

3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards, or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B., Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, THE REMEDIES PROVIDED HEREIN ARE THE SOLE AND EXCLUSIVE REMEDIES. IN NO EVENT SHALL MILLER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFIT), WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

Any express warranty not provided herein and any implied warranty, guaranty or representation as to performance, and any remedy for breach of contract tort or any other legal theory which, but for this provision, might arise by implication, operation of law, custom of trade or course of dealing, including any implied warranty of merchantability or fitness for particular purpose, with respect to any and all equipment furnished by Miller is excluded and disclaimed by Miller.

Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.
Owner’s Record

Please complete and retain with your personal records.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Serial/Style Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>(Date which equipment was delivered to original customer.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Service

Contact a DISTRIBUTOR or SERVICE AGENCY near you.

Always provide Model Name and Serial/Style Number.

Contact your Distributor for:
- Welding Supplies and Consumables
- Options and Accessories
- Personal Safety Equipment
- Service and Repair
- Replacement Parts
- Training (Schools, Videos, Books)
- Technical Manuals (Servicing Information and Parts)
- Circuit Diagrams
- Welding Process Handbooks

To locate a Distributor or Service Agency visit www.millerwelds.com or call 1-800-4-A-Miller

Contact the Delivering Carrier to:
- File a claim for loss or damage during shipment.

For assistance in filing or settling claims, contact your distributor and/or equipment manufacturer’s Transportation Department.