From Miller to You

Thank you and congratulations on choosing Miller. Now you can get the job done and get it done right. We know you don’t have time to do it any other way.

That’s why when Niels Miller first started building arc welders in 1929, he made sure his products offered long-lasting value and superior quality. Like you, his customers couldn’t afford anything less. Miller products had to be more than the best they could be. They had to be the best you could buy.

Today, the people that build and sell Miller products continue the tradition. They’re just as committed to providing equipment and service that meets the high standards of quality and value established in 1929.

This Owner’s Manual is designed to help you get the most out of your Miller products. Please take time to read the Safety precautions. They will help you protect yourself against potential hazards on the worksite.

We’ve made installation and operation quick and easy. With Miller you can count on years of reliable service with proper maintenance. And if for some reason the unit needs repair, there’s a Troubleshooting section that will help you figure out what the problem is. The parts list will then help you to decide the exact part you may need to fix the problem. Warranty and service information for your particular model are also provided.

Miller Electric manufactures a full line of welders and welding related equipment. For information on other quality Miller products, contact your local Miller distributor to receive the latest full line catalog or individual catalog sheets. To locate your nearest distributor or service agency call 1-800-4-A-Miller, or visit us at www.MillerWelds.com on the web.
TABLE OF CONTENTS

SECTION 1 – SAFETY PRECAUTIONS - READ BEFORE USING 1
 1-1. Symbol Usage .. 1
 1-2. Arc Welding Hazards .. 1
 1-3. Additional Symbols For Installation, Operation, And Maintenance 3
 1-4. California Proposition 65 Warnings .. 3
 1-5. Principal Safety Standards .. 4
 1-6. EMF Information .. 4

SECTION 2 – CONSIGNES DE SÉCURITÉ – À LIRE AVANT UTILISATION 5
 2-1. Signification des symboles ... 5
 2-2. Dangers relatifs au soudage à l'arc ... 5
 2-3. Autres symboles relatifs à l'installation, au fonctionnement et à l'entretien de l'appareil. ... 7
 2-4. Principales normes de sécurité .. 8
 2-5. Information sur les champs électromagnétiques 8

SECTION 3 – INSTALLATION ... 9
 3-1. Specifications .. 9
 3-2. Duty Cycle And Overheating .. 9
 3-3. Stick (SMAW) Volt-Ampere Curves .. 10
 3-4. TIG (GTAW) Volt-Ampere Curve ... 11
 3-5. Selecting A Location .. 12
 3-6. Weld Output Terminals And Selecting Cable Sizes* 13
 3-7. TIG Lift-Arc DCEN (Direct Current Electrode Negative) Connections 14
 3-8. Stick DCEP (Direct Current Electrode Positive) Connections 15
 3-9. Electrical Service Guide ... 15
 3-10. Selecting 230 Volts AC Single/Three Phase Input Voltage 16
 3-11. Selecting 460 - 575 Volts AC Three Phase Input Voltage 17
 3-12. Connecting Input Power ... 18

SECTION 4 – OPERATION ... 19
 4-1. Controls ... 19
 4-2. Process Select Control ... 20
 4-3. Stick Start Procedure – Scratch Start Technique 21
 4-4. Lift-ArcE Start Procedure ... 21
 4-5. Amperage Control .. 22
 4-6. Remote 14 Receptacle Information .. 22
 4-7. Fan-On-Demand .. 22
 4-8. Rack Mounting ... 22

SECTION 5 – MAINTENANCE AND TROUBLESHOOTING 23
 5-1. Routine Maintenance ... 23
 5-2. Blowing Out Inside Of Unit .. 23
 5-3. Troubleshooting ... 24

SECTION 6 – ELECTRICAL DIAGRAMS .. 26

SECTION 7 – SELECTING AND PREPARING TUNGSTEN ELECTRODE 27
 7-1. Selecting Tungsten Electrode ... 27
 7-2. Safety Information About Tungsten .. 27
 7-3. Preparing Tungsten For AC Or DC Electrode Negative (DCEN) Welding 28

SECTION 8 – PARTS LIST ... 30

OPTIONS AND ACCESSORIES

WARRANTY
SECTION 1 - SAFETY PRECAUTIONS - READ BEFORE USING

1-1. Symbol Usage

⚠️ Means Warning! Watch Out! There are possible hazards with this procedure! The possible hazards are shown in the adjoining symbols.

▲ Marks a special safety message.

⚠️ Marks a special safety message.

This group of symbols means Warning! Watch Out! possible ELECTRIC SHOCK, MOVING PARTS, and HOT PARTS hazards. Consult symbols and related instructions below for necessary actions to avoid the hazards.

1-2. Arc Welding Hazards

▲ The symbols shown below are used throughout this manual to call attention to and identify possible hazards. When you see the symbol, watch out, and follow the related instructions to avoid the hazard. The safety information given below is only a summary of the more complete safety information found in the Safety Standards listed in Section 1-5. Read and follow all Safety Standards.

▲ Only qualified persons should install, operate, maintain, and repair this unit.

▲ During operation, keep everybody, especially children, away.

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also electric when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- Do not touch live electrical parts.
- Wear dry, hole-free insulating gloves and body protection.
- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground.
- Do not use AC output in damp areas, if movement is confined, or if covers big enough to prevent any physical contact with the work or ground.
- Do not touch live electrical parts.
- Use AC output ONLY if required for the welding process.
- If AC output is required, use remote output control if present on unit.
- Disconnect input power or stop engine before installing or servicing this equipment. Lockout/tagout input power according to OSHA 29 CFR 1910.147 (see Safety Standards).
- Properly install and ground this equipment according to its Owner’s Manual and national, state, and local codes.
- Always verify the supply ground – check and be sure that input power cord ground wire is properly connected to ground terminal in disconnect box or that cord plug is connected to a properly grounded receptacle outlet.
- When making input connections, attach proper grounding conductor first – double-check connections.
- Frequently inspect input power cord for damage or bare wiring – replace cord immediately if damaged – bare wiring can kill.
- Turn off all equipment when not in use.
- Do not use worn, damaged, undersized, or poorly spliced cables.
- Do not drape cables over your body.

- If earth grounding of the workpiece is required, ground it directly with a separate cable.
- Do not touch electrode if you are in contact with the work, ground, or another electrode from a different machine.
- Use only well-maintained equipment. Repair or replace damaged parts at once. Maintain unit according to manual.
- Wear a safety harness if working above floor level.
- Keep all panels and covers securely in place.
- Clamp work cable with good metal-to-metal contact to workpiece or worktable as near the weld as practical.
- Insulate work clamp when not connected to workpiece to prevent contact with any metal object.
- Do not connect more than one electrode or work cable to any single weld output terminal.

SIGNIFICANT DC VOLTAGE exists after removal of input power on inverters.

- Turn Off inverter, disconnect input power, and discharge input capacitors according to instructions in Maintenance Section before touching any parts.

FUMES AND GASES can be hazardous.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- Keep your head out of the fumes. Do not breathe the fumes.
- If inside, ventilate the area and/or use exhaust at the arc to remove welding fumes and gases.
- If ventilation is poor, use an approved air-supplied respirator.
- Read the Material Safety Data Sheets (MSDSs) and the manufacturer’s instructions for metals, consumables, coatings, cleaners, and degreasers.
- Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Always have a trained watch-person nearby. Welding fumes and gases can displace air and lower the oxygen level causing injury or death. Be sure the breathing air is safe.
- Do not weld in locations near degreasers, cleaning, or spray operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and if necessary, while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.
ARC RAYS can burn eyes and skin.

Arc rays from the welding process produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin. Sparks fly off from the weld.

- Wear a welding helmet fitted with a proper shade of filter to protect your face and eyes when welding or watching (see ANSI Z49.1 and Z87.1 listed in Safety Standards).
- Wear approved safety glasses with side shields under your helmet.
- Use protective screens or barriers to protect others from flash and glare; warn others not to watch the arc.
- Wear protective clothing made from durable, flame-resistant material (leather and wool) and foot protection.

BUILDUP OF GAS can injure or kill.

- Shut off shielding gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

HOT PARTS can cause severe burns.

- Do not touch hot parts bare handed.
- Allow cooling period before working on gun or torch.

MAGNETIC FIELDS can affect pacemakers.

- Pacemaker wearers keep away.
- Wearers should consult their doctor before going near arc welding, gouging, or spot welding operations.

NOISE can damage hearing.

- Wear approved ear protection if noise level is high.

CYLINDERS can explode if damaged.

- Protect compressed gas cylinders from excessive heat, mechanical shocks, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
- Keep cylinders away from any welding or other electrical circuits.
- Never drape a welding torch over a gas cylinder.
- Never allow a welding electrode to touch any cylinder.
- Never weld on a pressurized cylinder − explosion will result.
- Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- Turn face away from valve outlet when opening cylinder valve.
- Keep protective cap in place over valve except when cylinder is in use or connected for use.
- Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards.

FLYING METAL can injure eyes.

- Welding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.
- Wear approved safety glasses with side shields even under your welding helmet.

WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

- Protect yourself and others from flying sparks and hot metal.
- Do not weld where flying sparks can strike flammable material.
- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on closed containers such as tanks, drums, or pipes, unless they are properly prepared according to AWS F4.1 (see Safety Standards).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock and fire hazards.
- Do not use welder to thaw frozen pipes.
- Remove stick electrode from holder or cut off welding wire at contact tip when not in use.
- Wear oil-free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.
- Remove any combustibles, such as a butane lighter or matches, from your person before doing any welding.

BUILDUP OF GAS can injure or kill.

- Shut off shielding gas supply when not in use.
- Always ventilate confined spaces or use approved air-supplied respirator.

HOT PARTS can cause severe burns.

- Do not touch hot parts bare handed.
- Allow cooling period before working on gun or torch.

MAGNETIC FIELDS can affect pacemakers.

- Pacemaker wearers keep away.
- Wearers should consult their doctor before going near arc welding, gouging, or spot welding operations.

NOISE can damage hearing.

- Wear approved ear protection if noise level is high.

CYLINDERS can explode if damaged.

- Protect compressed gas cylinders from excessive heat, mechanical shocks, slag, open flames, sparks, and arcs.
- Install cylinders in an upright position by securing to a stationary support or cylinder rack to prevent falling or tipping.
- Keep cylinders away from any welding or other electrical circuits.
- Never drape a welding torch over a gas cylinder.
- Never allow a welding electrode to touch any cylinder.
- Never weld on a pressurized cylinder − explosion will result.
- Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- Turn face away from valve outlet when opening cylinder valve.
- Keep protective cap in place over valve except when cylinder is in use or connected for use.
- Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards.

FLYING METAL can injure eyes.

- Welding, chipping, wire brushing, and grinding cause sparks and flying metal. As welds cool, they can throw off slag.
- Wear approved safety glasses with side shields even under your welding helmet.

WELDING can cause fire or explosion.

Welding on closed containers, such as tanks, drums, or pipes, can cause them to blow up. Sparks can fly off from the welding arc. The flying sparks, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode to metal objects can cause sparks, explosion, overheating, or fire. Check and be sure the area is safe before doing any welding.

- Protect yourself and others from flying sparks and hot metal.
- Do not weld where flying sparks can strike flammable material.
- Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- Watch for fire, and keep a fire extinguisher nearby.
- Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- Do not weld on closed containers such as tanks, drums, or pipes, unless they are properly prepared according to AWS F4.1 (see Safety Standards).
- Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock and fire hazards.
- Do not use welder to thaw frozen pipes.
- Remove stick electrode from holder or cut off welding wire at contact tip when not in use.
- Wear oil-free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes, and a cap.
- Remove any combustibles, such as a butane lighter or matches, from your person before doing any welding.
1-3. Additional Symbols For Installation, Operation, And Maintenance

FIRE OR EXPLOSION hazard.
- Do not install or place unit on, over, or near combustible surfaces.
- Do not install unit near flammables.
- Do not overload building wiring – be sure power supply system is properly sized, rated, and protected to handle this unit.

FALLING UNIT can cause injury.
- Use lifting eye to lift unit only, NOT running gear, gas cylinders, or any other accessories.
- Use equipment of adequate capacity to lift and support unit.
- If using lift forks to move unit, be sure forks are long enough to extend beyond opposite side of unit.

OVERUSE can cause OVERHEATING
- Allow cooling period; follow rated duty cycle.
- Reduce current or reduce duty cycle before starting to weld again.
- Do not block or filter airflow to unit.

STATIC (ESD) can damage PC boards.
- Put on grounded wrist strap BEFORE handling boards or parts.
- Use proper static-proof bags and boxes to store, move, or ship PC boards.

MOVING PARTS can cause injury.
- Keep away from moving parts.
- Keep away from pinch points such as drive rolls.

WELDING WIRE can cause injury.
- Do not press gun trigger until instructed to do so.
- Do not point gun toward any part of the body, other people, or any metal when threading welding wire.

MOVING PARTS can cause injury.
- Keep away from moving parts such as fans.
- Keep all doors, panels, covers, and guards closed and securely in place.

H.F. RADIATION can cause interference.
- High-frequency (H.F.) can interfere with radio navigation, safety services, computers, and communications equipment.
- Have only qualified persons familiar with electronic equipment perform this installation.
- The user is responsible for having a qualified electrician promptly correct any interference problem resulting from the installation.
- If notified by the FCC about interference, stop using the equipment at once.
- Have the installation regularly checked and maintained.
- Keep high-frequency source doors and panels tightly shut, keep spark gaps at correct setting, and use grounding and shielding to minimize the possibility of interference.

ARC WELDING can cause interference.
- Electromagnetic energy can interfere with sensitive electronic equipment such as computers and computer-driven equipment such as robots.
- Be sure all equipment in the welding area is electromagnetically compatible.
- To reduce possible interference, keep weld cables as short as possible, close together, and down low, such as on the floor.
- Locate welding operation 100 meters from any sensitive electronic equipment.
- Be sure this welding machine is installed and grounded according to this manual.
- If interference still occurs, the user must take extra measures such as moving the welding machine, using shielded cables, using line filters, or shielding the work area.

1-4. California Proposition 65 Warnings

- Welding or cutting equipment produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Section 25249.5 et seq.)

- Battery posts, terminals and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and birth defects or other reproductive harm. Wash hands after handling.

For Gasoline Engines:
- Engine exhaust contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

For Diesel Engines:
- Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.
1-5. Principal Safety Standards

1-6. EMF Information

Considerations About Welding And The Effects Of Low Frequency Electric And Magnetic Fields

Welding current, as it flows through welding cables, will cause electromagnetic fields. There has been and still is some concern about such fields. However, after examining more than 500 studies spanning 17 years of research, a special blue ribbon committee of the National Research Council concluded that: “The body of evidence, in the committee’s judgment, has not demonstrated that exposure to power-frequency electric and magnetic fields is a human-health hazard.” However, studies are still going forth and evidence continues to be examined. Until the final conclusions of the research are reached, you may wish to minimize your exposure to electromagnetic fields when welding or cutting.

To reduce magnetic fields in the workplace, use the following procedures:

1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cables around your body.
4. Keep welding power source and cables as far away from operator as practical.
5. Connect work clamp to workpiece as close to the weld as possible.

About Pacemakers:

Pacemaker wearers consult your doctor first. If cleared by your doctor, then following the above procedures is recommended.
SECTION 2 – CONSIGNES DE SÉCURITÉ – À LIRE AVANT UTILISATION

2-1. Signification des symboles

Signifie « Mise en garde. Faire preuve de vigilance. » Cette procédure présente des risques identifiés par les symboles adjacents aux directives.

Identifie un message de sécurité particulier.

Signifie « NOTA » ; n’est pas relatif à la sécurité.

2-2. Dangers relatifs au soudage à l’arc

Les symboles ci-après sont utilisés tout au long du présent manuel pour attirer l’attention sur les dangers potentiels et les identifier. Lorsqu’on voit un symbole, faire preuve de vigilance et suivre les directives mentionnées afin d’éviter tout danger. Les consignes de sécurité énoncées ci-après ne font que résumer le contenu des normes de sécurité mentionnées à la section 2-4. Lire et respecter toutes ces normes.

L’installation, l’utilisation, l’entretien et les réparations ne doivent être confiés qu’à des personnes qualifiées.

Pendant l’utilisation de l’appareil, tenir à l’écart toute personne, en particulier les enfants.

N’utiliser que du matériel en bon état. Réparer ou remplacer sur-le-champ les pièces endommagées. Entretenir l’appareil conformément au présent manuel.

Porter un harnais de sécurité quand on travaille en hauteur.

Maintenir solidement en place tous les panneaux et capots.

Fixer le câble de retour de façon à obtenir un bon contact métal sur métal avec la pièce à souder ou la table de travail, le plus près possible de la soudure.

Ne pas connecter plus d’une électrode ou plus d’un câble de masse à un même terminal de sortie.

Il subsiste un COURANT CONTINU IMPORTANT dans les convertisseurs après la suppression de l’alimentation électrique.

Arrêter les convertisseurs, débrancher le courant électrique et décharger les condensateurs d’alimentation selon les instructions énoncées à la section Entretien avant de toucher les pièces.

Se tenir à distance des fumées et ne pas les inhaler.

À l’intérieur, ventiler la zone et/ou utiliser un dispositif d’aspiration au niveau de l’arc pour l’évacuation des fumées et des gaz de soudage.

Si la ventilation est insuffisante, utiliser un respirateur à adduction d’air agréé.

Lire les fiches techniques de santé–sécurité (FTSS) et les instructions du fabricant concernant les métaux, les consommables, les revêtements, les nettoyants et les dégraissateurs.

Ne travailler dans un espace clos que s’il est bien ventilé ou porter un respirateur à adduction d’air. Demander toujours à un surveillant dûment formé de se tenir à proximité. Des fumées et des gaz de soudage peuvent se substituer à l’air, abaisser la teneur en oxygène et causer des lésions ou des accidents mortels. S’assurer que l’air est respirable.

Ne pas souder à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent réagir en présence de vapeurs et former des gaz hautement toxiques et irritants.

Ne pas souder de métaux munis d’un revêtement, tels que la tôle d’acier galvanisée, plombée ou cadmée, à moins que le revêtement n’ait été enlevé dans la zone de soudage, que l’endroit soit bien ventilé, et si nécessaire, porter un respirateur à adduction d’air. Les revêtements et tous les métaux renfermant ces éléments peuvent dégager des fumées toxiques lorsqu’on les soude.
LES RAYONS DE L’ARC peuvent causer des brûlures oculaires et cutanées.
Le rayonnement de l’arc génère des rayons visibles et invisibles intenses (ultraviolets et infrarouges) susceptibles de causer des brûlures oculaires et cutanées. Des étincelles sont projetées pendant le soudage.
- Porter un masque de soudage muni d’un filtre de la nuance adéquate pour se protéger le visage et les yeux pendant le soudage ou pour regarder (voir les normes de sécurité ANSI Z49.1 et Z87.1).
- Porter des lunettes de sécurité à écrans latéraux sous le masque.
- Utiliser des écrans ou des barrières pour protéger les tiers de l’éclat éblouissant ou aveuglant de l’arc ; leur demander de ne pas regarder l’arc.
- Porter des vêtements de protection en matière durable et ignifuge (cuir ou laine) et des chaussures de sécurité.

LE SOUTDAGE peut causer un incendie ou une explosion.
Le soudage effectué sur des récipients fermés tels que des réservoirs, des fûts ou des conduites peut causer leur éclatement. Des étincelles peuvent être projetées de l’arc de soudure. La projection d’étincelles, des pièces chaudes et les équipements chauds peuvent causer des incendies et des brûlures. Le contact accidentel de l’électrode avec tout objet métallique peut causer des étincelles, une explosion, un surchauffement ou un incendie. Avant de commencer le soudage, vérifier et s’assurer que l’endroit ne présente pas de danger.
- Se protéger et protéger les tiers de la projection d’étincelles et de métal chaud.
- Ne pas souder à un endroit où des étincelles peuvent tomber sur des substances inflammables.
- Placer toutes les substances inflammables à une distance de 10,7 m de l’arc de soudage. En cas d’impossibilité, les recouvrir soigneusement avec des protections agréées.
- Des étincelles et des matières en fusion peuvent facilement passer même par des fissures et des ouvertures de petites dimensions.
- Surveiller tout déclenchement d’incendie et tenir un extincteur à proximité.
- Le soudage effectué sur un plafond, un plancher, une paroi ou une cloison peut déclencher un incendie de l’autre côté.
- Ne pas souder des récipients fermés tels que des réservoirs, des fûts ou des conduites, à moins qu’ils n’aient été préparés conformément à l’AWS F4.1 (voir les normes de sécurité).
- Brancher le câble sur la pièce le plus près possible de la zone de soudage pour éviter que le courant ne circule sur une longue distance, par des chemins inconnus, et ne cause des risques d’électrocution et d’incendie.
- Ne pas utiliser le poste de soudage pour dégeler des conduites gelées.
- En cas de non utilisation, enlever la baguette d’électrode du porte–électrode ou couper le fil au raz du tube-contact.
- Porter des vêtements de protection exempts d’huile tels que des gants en cuir, une chemise en tissu épais, des pantalons sans revers, des chaussures montantes et un masque.
- Avant de souder, retirer tout produit combustible de ses poches, tel qu’un briquet au butane ou des allumettes.

LES PARTICULES PROJETÉES peuvent blesser les yeux.
Le soudage, le burinage, le passage de la pièce à la brosse métallique et le meulage provoquent l’émission d’étincelles et de particules métalliques. Pendant leur refroidissement, les soudures risquent de projeter du laitier.
- Porter des lunettes de sécurité à écrans latéraux agréés, même sous le masque de soudage.

LES ACCUMULATIONS DE GAZ peuvent causer des blessures ou même la mort.
- Couper l’alimentation en gaz protecteur en cas de non utilisation.
- Veiller toujours à bien ventiler les espaces confinés ou porter un respirateur à adduction d’air agrée.

LES PIÈCES CHAUDES peuvent causer des brûlures graves.
- Ne pas toucher les pièces chaudes à main nue.
- Prévoir une période de refroidissement avant d’utiliser le pistolet ou la torche.

LES CHAMPS MAGNÉTIQUES peuvent perturber le fonctionnement des stimulateurs cardiaques.
- Les personnes qui portent un stimulateur cardiaque doivent se tenir à distance.
- Ils doivent consulter leur médecin avant de s’approcher d’un lieu où on exécute des opérations de soudage de l’arc, de gougeage ou de soudage par points.

LE BRUIT peut affecter l’ouïe.
Le bruit de certains processus et équipements peut affecter l’ouïe.
- Porter des protecteurs d’oreille agréés si le niveau sonore est trop élevé.

Les BOUTEILLES endommagées peuvent exploser.
Les bouteilles de gaz protecteur contiennent du gaz sous haute pression. Toute bouteille endommagée peut exploser. Comme les bouteilles de gaz font normalement partie du procédé de soudage, les manipuler avec précaution.
- Protéger les bouteilles de gaz comprimé de la chaleur excessive, des chocs mécaniques, du laitier, des flammes nues, des étincelles et des arcs.
- Placer les bouteilles debout en les fixant dans un support stationnaire ou dans un porte–bouteilles pour les empêcher de tomber ou de se renverser.
- Tenir les bouteilles éloignées des circuits de soudage ou autres circuits électriques.
- Ne jamais poser une torche de soudage sur une bouteille de gaz.
- Ne jamais mettre une électrode de soudage en contact avec une bouteille de gaz.
- Ne jamais souder une bouteille contenant du gaz sous pression – elle risquerait d’exploser.
- N’utiliser que les bouteilles de gaz protecteur, régulateurs, tuyaux et raccords adéquats pour l’application envisagée ; les maintenir en bon état, ainsi que les pièces connexes.
- Détourner la tête lorsqu’on ouvre la souape d’une bouteille.
- Laisser le capuchon protecteur sur la soupape, sauf en cas d’utilisation ou de branchement de la bouteille.
- Lire et suivre les instructions concernant les bouteilles de gaz comprimé, les équipements associés et les publications P–1 de la CGA, mentionnées dans les normes de sécurité.

Risque D’INCENDIE OU D’EXPLOSION
- Ne pas placer l’appareil sur une surface inflammable, ni au-dessus ou à proximité d’elle.
- Ne pas installer l’appareil à proximité de produits inflammables.
- Ne pas surcharger l’installation électrique – s’assurer que l’alimentation est correctement dimensionnée et protégée avant de mettre l’appareil en service.

LA CHUTE DE L’APPAREIL peut blesser.
- Ne pas installer l’appareil à proximité de produits inflammables.
- Si on utilise un chariot élévateur pour déplacer l’unité, s’assurer que les fourches sont suffisamment longues pour dépasser du côté opposé de l’appareil.

L’EMPLOI EXCESSIF peut FAIRE SURCHAUFFER L’ÉQUIPEMENT.
- Prévoir une période de refroidissement ; respecter le cycle opératoire nominal.
- Ne pas obstruer les orifices ou filtrer l’alimentation en air du poste.

LES CHARGES ÉLECTROSTATIQUES peuvent endommager les circuits imprimés.
- Mettre un bracelet antistatique AVANT de manipuler des cartes ou des pièces.
- Utiliser des pochettes et des boîtes antistatiques pour stocker, déplacer ou expédier des cartes de circuits imprimés.

LES PIÈCES MOBILES peuvent causer des blessures.
- Se tenir à l’écart des pièces mobiles.
- Se tenir à l’écart des points de coincement tels que les dévidoirs.

LES FILS DE SOUDAGE peuvent causer des blessures.
- Ne pas appuyer sur la gâchette avant d’en avoir reçu l’instruction.
- Ne pas diriger le pistolet vers soi, vers d’autres personnes ou vers toute pièce mécanique en engageant le fil de soudage.

LES ORGANES MOBILES peuvent causer des blessures.
- Se tenir à l’écart des organes mobiles comme les ventilateurs.
- Maintenir fermés et bien fixés les portes, panneaux, recouvrements et dispositifs de protection.

LE RAYONNEMENT HAUTE FRÉQUENCE (H. F.) risque de causer des interférences.
- Le rayonnement haute fréquence peut causer des interférences avec les équipements de radio-navigation et de communication, les services de sécurité et les ordinateurs.
- Si la Federal Communications Commission signale des interférences, arrêter immédiatement l’appareil.
- Maintenir soigneusement fermés les panneaux et les portes des sources de haute fréquence.
- Veiller à ce que tout l’équipement de la zone de soudage soit compatible au point de vue électromagnétique.

LE SOUDAGE À L’ARC peut causer des interférences.
- L’energie électromagnétique peut causer des interférences avec l’équipement électronique sensible tel que les ordinateurs et l’équipement commandé par ordinateur tel que les robots.
- Veiller à ce que tout l’équipement de la zone de soudage soit compatible.
- Pour réduire la possibilité d’interférence, maintenir les câbles de soudage aussi courts que possible, les grouper, et les poser aussi bas que possible (par ex. : à terre).
- Veiller à soudier à une distance de 100 mètres de tout équipement électronique sensible.
- En cas d’interférences après exécution des directives précédentes, il incombe à l’utilisateur de prendre des mesures supplémentaires telles que le déplacement du poste, l’utilisation de câbles blindés, l’utilisation de filtres de ligne ou la pose de protecteurs dans la zone de travail.

LES CHAMPS MAGNÉTIQUES peuvent affecter les stimulateurs cardiaques.
- Porteurs de stimulateur cardiaque, restez à distance.
- Les porteurs d’un stimulateur cardiaque doivent d’abord consulter leur médecin avant de s’approcher des opérations de soudage à l’arc, de gougeage ou de soudage par points.
2-4. Principales normes de sécurité

National Electrical Code, norme NFPA 70, de la National Fire Protection Association, P.O. Box 9101, 1 Battery March Park, Quincy, MA 02269–9101 (téléphone : (617) 770–3000, sites Web : www.nfpa.org et www.sparky.org).

Practice For Occupational And Educational Eye And Face Protection, norme ANSI Z87.1, de l’American National Standards Institute, 11 West 42nd Street, New York, NY 10036–8002 (téléphone : (212) 642–4900, site Web : wwwansi.org).

Standard for Fire Prevention During Welding, Cutting, and Other Hot Work, norme NFPA 51B, de la National Fire Protection Association, P.O. Box 9101, 1 Battery March Park, Quincy, MA 02269–9101 (téléphone : (617) 770–3000, site Web : www.nfpa.org et www.sparky.org).

2-5. Information sur les champs électromagnétiques

Données sur le soudage électrique et les effets des champs magnétiques basse fréquence sur l’organisme

En parcourant les câbles de soudage, le courant crée des champs électromagnétiques. Les effets potentiels de tels champs restent préoccupants. Cependant, après avoir examiné plus de 500 études qui ont été faites pendant une période de recherche de 17 ans, un comité de spécialistes du National Research Council a conclu : « L’accumulation de preuves n’a pas démontré que l’exposition aux champs magnétiques et aux champs électriques à haute fréquence constitue un risque pour la santé humaine ». Toutefois, les études et l’examen des preuves se poursuivent. En attendant les conclusions finales de la recherche, il serait souhaitable de réduire l’exposition aux champs électromagnétiques pendant le soudage ou le coupage.

Afin de réduire les champs électromagnétiques en milieu de travail, respecter les consignes suivantes :

1. Garder les câbles ensemble en les torsadant ou en les fixant avec du ruban adhésif.
3. Ne pas s’enrouler les câbles autour du corps.
4. Garder le poste de soudage et les câbles le plus loin possible de soi.
5. Placer la pince de masse le plus près possible de la zone de soudage.

Consignes relatives aux stimulateurs cardiaques :

Les personnes qui portent un stimulateur cardiaque doivent avant tout consulter leur médecin. Si ce dernier les déclare aptes, il leur est recommandé de respecter les consignes ci-dessus.
3-1. Specifications

<table>
<thead>
<tr>
<th>Welding Mode</th>
<th>Input Power</th>
<th>Rated Output</th>
<th>Welding Amperage Range</th>
<th>Maximum Open-Circuit Voltage</th>
<th>Amperes Input At Rated Load Output, 50/60 Hz</th>
<th>KVA</th>
<th>KW</th>
<th>Dimensions</th>
<th>Net Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stick (SMAW)</td>
<td>3-Phase</td>
<td>250 A @ 30 VDC, 50 % Duty Cycle</td>
<td>5-250 A</td>
<td>77 VDC</td>
<td>30.5</td>
<td>14.7</td>
<td>11.6</td>
<td>11.7</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 A @ 28 VDC, 100 % Duty Cycle</td>
<td></td>
<td></td>
<td>21.7</td>
<td>11.4</td>
<td>9.2</td>
<td>9.1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>1-Phase</td>
<td>200 A @ 28 VDC, 50 % Duty Cycle</td>
<td>5-200 A</td>
<td>65 VDC</td>
<td>42.6</td>
<td>n/a</td>
<td>n/a</td>
<td>9.8</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 A @ 26 VDC, 100 % Duty Cycle</td>
<td></td>
<td></td>
<td>30.4</td>
<td>n/a</td>
<td>n/a</td>
<td>6.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welding Mode</th>
<th>Input Power</th>
<th>Rated Output</th>
<th>Welding Amperage Range</th>
<th>Maximum Open-Circuit Voltage</th>
<th>Amperes Input At Rated Load Output, 50/60 Hz</th>
<th>KVA</th>
<th>KW</th>
<th>Dimensions</th>
<th>Net Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-Phase</td>
<td>200 A @ 28 VDC, 50 % Duty Cycle</td>
<td></td>
<td></td>
<td>42.6</td>
<td>n/a</td>
<td>n/a</td>
<td>9.8</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 A @ 26 VDC, 100 % Duty Cycle</td>
<td></td>
<td></td>
<td>30.4</td>
<td>n/a</td>
<td>n/a</td>
<td>6.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

3-2. Duty Cycle And Overheating

Duty Cycle is percentage of 10 minutes that unit can weld at rated load without overheating.

If unit overheats, output stops, and cooling fan runs. Wait fifteen minutes for unit to cool. Reduce amperage or duty cycle before welding.

⚠️ Exceeding duty cycle can damage unit and void warranty.

![Graph showing welding amperage vs duty cycle for 3-phase and single-phase operations.](image)

200 A @ 50% Duty Cycle For Single Phase Operation

- 5 Minutes Welding
- 5 Minutes Resting

250 A @ 50% Duty Cycle For 3 Phase Operation

- 5 Minutes Welding
- 5 Minutes Resting

Overheating

- 15 Minutes
- A or V
- OR
- Reduce Duty Cycle
3-3. Stick (SMAW) Volt-Ampere Curves

Volt-ampere curves show minimum and maximum voltage and amperage output capabilities of welding power source. Curves of other settings fall between curves shown.

xx10 Stick VA Curves

xx18 Stick VA Curve

Ref. 206174
3-4. TIG (GTAW) Volt-Ampere Curve

Volt-ampere curves show minimum and maximum voltage and amperage output capabilities of welding power source. Curves of other settings fall between curves shown.

Ref. 206174
3-5. Selecting A Location

1 Line Disconnect Device
Locate unit near correct input power supply.

⚠ Special installation may be required where gasoline or volatile liquids are present – see NEC Article 511 or CEC Section 20.

Dimensions And Weight
40 lb (18.2 kg) - with power cord

Location And Airflow
3-6. Weld Output Terminals And Selecting Cable Sizes*

<table>
<thead>
<tr>
<th>Weld Output Terminals</th>
<th>Welding Amperes***</th>
<th>100 ft (30 m) Or Less</th>
<th>150 ft (45 m)</th>
<th>200 ft (60 m)</th>
<th>250 ft (70 m)</th>
<th>300 ft (90 m)</th>
<th>350 ft (105 m)</th>
<th>400 ft (120 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weld Cable Size and Total Cable (Copper) Length in Weld Circuit Not Exceeding</td>
<td>10 – 60% Duty Cycle</td>
<td>60 – 100% Duty Cycle</td>
<td>10 – 100% Duty Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4 (20)</td>
<td>4 (20)</td>
<td>4 (20)</td>
<td>3 (30)</td>
<td>2 (35)</td>
<td>1 (50)</td>
<td>1/0 (60)</td>
<td>1/0 (60)</td>
</tr>
<tr>
<td>150</td>
<td>3 (30)</td>
<td>3 (30)</td>
<td>2 (35)</td>
<td>1 (50)</td>
<td>1/0 (60)</td>
<td>2/0 (70)</td>
<td>3/0 (95)</td>
<td>3/0 (95)</td>
</tr>
<tr>
<td>200</td>
<td>3 (30)</td>
<td>2 (35)</td>
<td>1 (50)</td>
<td>1/0 (60)</td>
<td>2/0 (70)</td>
<td>3/0 (95)</td>
<td>4/0 (120)</td>
<td>4/0 (120)</td>
</tr>
<tr>
<td>250</td>
<td>2 (35)</td>
<td>1 (50)</td>
<td>1/0 (60)</td>
<td>2/0 (70)</td>
<td>3/0 (95)</td>
<td>4/0 (120)</td>
<td>2 ea. 2/0 (2x70)</td>
<td>2 ea. 2/0 (2x70)</td>
</tr>
<tr>
<td>300</td>
<td>1 (50)</td>
<td>1/0 (60)</td>
<td>2/0 (70)</td>
<td>3/0 (95)</td>
<td>4/0 (120)</td>
<td>2 ea. 2/0 (2x70)</td>
<td>2 ea. 3/0 (2x95)</td>
<td>2 ea. 3/0 (2x95)</td>
</tr>
</tbody>
</table>

* This chart is a general guideline and may not suit all applications. If cable overheating occurs (normally you can smell it), use next size larger cable.

**Weld cable size (AWG) is based on either a 4 volts or less drop or a current density of at least 300 circular mils per ampere.

() = mm² for metric use

***Select weld cable size for pulsing application at peak amperage value.
3-7. TIG Lift-Arc™ DCEN (Direct Current Electrode Negative) Connections

1. Positive (+) Weld Output Terminal
 Connect work lead to positive weld output terminal.

2. Negative (−) Weld Output Terminal
 Connect TIG torch to negative weld output terminal.

3. Gas Cylinder

4. Cylinder Valve
 Open valve slightly so gas flow blows dirt from valve. Close valve.

5. Regulator/Flowmeter

6. Flow Adjust
 Typical flow rate is 15 cubic feet per hour (7.1 liters per minute).

 Connect torch gas hose to regulator/flowmeter

7. Gas Valve
 Valve controls gas preflow and postflow. Open valve on torch just before welding.

Tools Needed:

11/16 in, 1-1/8 in, (21 mm)
3-8. Stick DCEP (Direct Current Electrode Positive) Connections

1 Negative (−) Weld Output Terminal
 Connect work lead to negative weld output terminal.
2 Positive (+) Weld Output Terminal
 Connect electrode holder to positive weld output terminal.

3-9. Electrical Service Guide

⚠ CAUTION: INCORRECT INPUT POWER can damage this welding power source. This welding power source requires a CONTINUOUS supply of 50/60 Hz power at ±10% of rated input voltage. Do not use a generator with automatic idle device (that idles engine when no load is sensed) to supply input power to this welding power source.

NOTE

Actual input voltage cannot exceed ±10% of indicated required input voltage. If actual input voltage is outside of this range, no output is available.

<table>
<thead>
<tr>
<th></th>
<th>50/60 Hz Single-Phase, 50% Duty Cycle</th>
<th>50/60 Hz Three-Phase, 50% Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Input Amperes At Rated Output</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>Max Recommended Standard Fuse Rating In Amperes ¹</td>
<td>Time-Delay ²</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Normal Operating ³</td>
<td>60</td>
</tr>
<tr>
<td>Min Input Conductor Size In AWG/Kcmil</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Max Recommended Input Conductor Length In Feet (Meters)</td>
<td>143 (44)</td>
<td>147 (45)</td>
</tr>
<tr>
<td>Min Grounding Conductor Size In AWG/Kcmil</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Reference: 2002 National Electrical Code (NEC)

¹ Choose a circuit breaker with time-current curves comparable to a Time Delay Fuse.
² "Time-Delay" fuses are UL class “RK5”.
³ "Normal Operating" (general purpose – no intentional delay) fuses are UL class “K5” (up to and including 60 amp), and UL class “H” (65 amp and above).

⚠ Caution: Failure to follow these fuse and circuit breaker recommendations could create an electric shock or fire hazard.
3-10. Selecting 230 Volts AC Single/Three Phase Input Voltage

- Turn Off welding power source, and disconnect input power before proceeding.

Check input voltage available at site.

1. Voltage Selection View Window

The input voltage that the power source is linked for appears in the Voltage Selection View Window.

Check voltage selected in unit. Changing selection is only necessary if selected value does not match available input voltage.

To change relinking board position, remove top cover and left side panel.

To remove top cover, remove 3 screws from both sides, also remove 2 screws from front and rear panels. Do Not Remove Handle. Slightly separate front and rear panels away from top cover. Lift up one end of top cover, then lift up other end, and remove top cover.

Remove 4 screws from left side panel, and panel can easily be removed from unit.

2. Relinking Board

3. Terminal Screws

Loosen terminal screws.

4. Relinking Board (Connection For 230 VAC Single/Three Phase Input Power)

Slide relinking board off connected terminals, move relinking board to correct input voltage terminals, and secure relinking board.

Be sure to tighten all four screws securing relinking board in place.

Tools Needed:

5/16 in
3-11. Selecting 460 - 575 Volts AC Three Phase Input Voltage

⚠️ Turn Off welding power source, and disconnect input power before proceeding.

Check input voltage available at site.

1 Voltage Selection View Window

The input voltage that the power source is linked for appears in the Voltage Selection View Window.

Check voltage selected in unit. Changing selection is only necessary if selected value does not match available input voltage.

To change relinking board position, remove top cover and left side panel.

To remove top cover, remove 3 screws from both sides, also remove 2 screws from front and rear panels. **Do Not Remove Handle.** Slightly separate front and rear panels away from top cover. Lift up one end of top cover, then lift up other end, and remove top cover.

Remove 4 screws from left side panel, and panel can easily be removed from unit.

2 Relinking Board

3 Unused Terminal

4 Terminal Screws

Loosen terminal screws.

5 Relinking Board (Connection For 460 - 575 VAC Input Power)

Slide relinking board off connected terminals, move relinking board to correct input voltage terminals, and secure relinking board.

⚠️ Be sure to tighten all four screws. Three screws securing relinking board in place.

Tools Needed:

- 5/16 in

1 Voltage Selection View Window

2 Top Cover Securing Screws — Front And Rear Panel

3 Top Cover Securing Screws — Left And Right Side Panel

4 Terminal Screws

5 Relinking Board (Connection For 460 - 575 VAC Input Power)
3-12. Connecting Input Power

Disconnect and lockout/tag-out input power before connecting input conductors from unit.

Have only qualified persons make this installation.

See rating label on unit and check input voltage available at site.

1. Input And Grounding Conductors
2. Line Disconnect Device
See Section 3-9.

For three-phase operation:

Always connect green or green/yellow wire to supply grounding terminal, never to a line terminal.

Connect black, white, and red wires (L1, L2, L3) to line terminals.

For single-phase operation:

Always connect green or green/yellow wire to supply grounding terminal, never to a line terminal.

3. Black And White Input Conductor
4. Red Input Conductor
5. Insulation Sleeving
6. Electrical Tape

Insulate and isolate red conductor as shown.
4-1. Controls

NOTE: Green on nameplate indicates a TIG function, Gray indicates a Stick function.

1 Power Switch
Use switch to turn unit and indicator light On/Off.

2 Output Indicator Light
When unit is first energized this indicator light flashes several times and then illuminates continuously. When unit is shut down, the indicator light flashes several times and the cooling fan will run briefly, then both will turn off completely.

3 Process Control
See Section 4-2.

4 Amperage Control
See Section 4-5.

5 High Temperature Shutdown Light
When unit is first energized this indicator light illuminates for approximately 1 second to provide visual confirmation that the light is functioning properly (see Section 3-2).

6 Remote 14 Receptacle
4-2. Process Select Control

1 Process Select Control
Rotate knob to select desired process.

Lift-Arc™ TIG - Normal open-circuit voltage is not present between the electrode and workpiece. A solid-state contactor does not energize until after the electrode touches the workpiece, preventing overheating, sticking, or contaminating the electrode (see Section 4-4). Make connections according to Section 3-7.

Stick E XX18 Soft - This setting provides a lower dig/arc force setting for smooth weld performance. A stable weld puddle with little arc “snap” gives excellent weld bead appearance with minimal spatter. Make connections according to Section 3-8.

Stick E XX18 Stiff - This setting provides a higher dig/arc force that gives a slightly more fluid weld puddle, more arc “snap”, and reduces the potential for electrode sticking at shorter arc lengths. Make connections according to Section 3-8.

Stick E XX10 Soft - This setting provides lower dig/arc force for open root vertical up joints or joints that do not require additional current for fit up inconsistencies. Make connections according to Section 3-8.

Stick E XX10 Stiff - This setting provides a higher dig/arc force for open root vertical down joints where additional current is needed to compensate for tight joint fit up without the need to increase overall welding current. Make connections according to Section 3-8.

<table>
<thead>
<tr>
<th>ELECTRODE TYPE</th>
<th>SUGGESTED PROCESS SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXX1</td>
<td>EXX10</td>
</tr>
<tr>
<td>EXX2</td>
<td>EXX10</td>
</tr>
<tr>
<td>EXX3</td>
<td>EXX18</td>
</tr>
<tr>
<td>EXX4</td>
<td>EXX18</td>
</tr>
<tr>
<td>EXX5</td>
<td>EXX18</td>
</tr>
<tr>
<td>EXX6</td>
<td>EXX18</td>
</tr>
<tr>
<td>EXX7</td>
<td>EXX18</td>
</tr>
<tr>
<td>EXX8</td>
<td>EXX18</td>
</tr>
<tr>
<td>STAINLESS</td>
<td>EXX18</td>
</tr>
</tbody>
</table>
4-3. Stick Start Procedure – Scratch Start Technique

With Stick selected, start arc as follows:
1. Electrode
2. Workpiece
3. Arc

Drag electrode across workpiece like striking a match; lift electrode slightly after touching work. If arc goes out electrode was lifted to high. If electrode sticks to workpiece, use a quick twist to free it.

![Stick Start Procedure Diagram](image)

4-4. Lift-Arc™ Start Procedure

Lift-Arc Start

With Lift-Arc™ selected, start arc as follows:
1. TIG Electrode
2. Workpiece

Turn gas on. Touch tungsten electrode to workpiece at weld start point. **Hold electrode to workpiece for 1-2 seconds**, and slowly lift electrode. Arc is formed when electrode is lifted.

Normal open-circuit voltage is not present before tungsten electrode touches workpiece; only a low sensing voltage is present between electrode and workpiece. The solid-state output contactor does not energize until after electrode is touching workpiece. This allows electrode to touch workpiece without overheating, sticking, or getting contaminated.

Application:

Lift-Arc is used for the DCEN GTAW process when HF Start method is not permitted, or to replace the scratch method.

![Lift-Arc Start Procedure Diagram](image)
4-5. Amperage Control

1 AMP ADJUST (Amperage Control)

Rotate knob clockwise to increase amperage (5-250 amps).

4-6. Remote 14 Receptacle Information

This unit automatically senses when a remote control is connected to the remote 14 receptacle. After connecting a remote control, the unit will automatically adjust output control to a primary/secondary configuration. In this configuration, the AMP ADJUST control on the unit becomes the primary and sets the maximum amperage output of the unit. The remote control becomes the secondary and provides an amperage range adjustment of 0 to 100% based on the AMP ADJUST control setting.

<table>
<thead>
<tr>
<th>Socket</th>
<th>Socket Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15 volts dc (not functional).</td>
</tr>
<tr>
<td>B</td>
<td>Contact closure to A completes 15 volts dc contactor control circuit (not functional).</td>
</tr>
<tr>
<td>C</td>
<td>Output to remote control; 0 to +10 volts dc.</td>
</tr>
<tr>
<td>D</td>
<td>Remote control circuit common.</td>
</tr>
<tr>
<td>E</td>
<td>0 to +10 volts dc input command signal from remote control.</td>
</tr>
<tr>
<td>K</td>
<td>Chassis common.</td>
</tr>
</tbody>
</table>

*The remaining sockets are not used.

4-7. Fan-On-Demand

This unit is equipped with Fan-On-Demand. The fan operates only when necessary to cool internal components. At power down, the fan will operate for a short period of time while the output indicator light is flashing.

4-8. Rack Mounting

This unit is capable of being rack mounted [see rack Owner’s Manual, OM-2238 (208 107)].
5-1. Routine Maintenance

Disconnect power before maintaining.

Maintain more often during severe conditions.

- **3 Months**
 - Replace unreadable labels.
 - Clean and tighten weld terminals.
 - Replace Damaged Gas Hose

- **3 Months**
 - Repair Or Replace Cracked Cables And Cords

- **6 Months**
 - Do not remove case when blowing out inside of unit (see Section 5-2).
 - Blow out inside. During heavy service clean monthly.

5-2. Blowing Out Inside Of Unit

Do not remove case when blowing out inside of unit.

To blow out unit, direct airflow through front and back louvers as shown.
5-3. Troubleshooting

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible Causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No weld output; unit completely inoperative.</td>
<td>Line disconnect switch open.</td>
<td>Place line disconnect switch in On position (see Section 3-12).</td>
</tr>
<tr>
<td></td>
<td>Blown line fuse(s).</td>
<td>Check and replace line fuse(s), if necessary, or reset circuit breaker (see Section 3-12).</td>
</tr>
<tr>
<td></td>
<td>Improper input power connections.</td>
<td>Check for proper input power connections (see Section 3-12).</td>
</tr>
<tr>
<td>No weld output. Blue LED flashes continuously, yellow LED off.</td>
<td>Line voltage too high or too low.</td>
<td>Line voltage must be within ±10%.</td>
</tr>
<tr>
<td></td>
<td>Unit not linked correctly.</td>
<td>Check line voltage and link unit accordingly.</td>
</tr>
<tr>
<td></td>
<td>Unit needs to be reset.</td>
<td>Cycle power switch off and back on again. If problem is not corrected, contact nearest Factory Authorized Service Agent.</td>
</tr>
<tr>
<td>No weld output. Voltage in excess of 100 V from an external source across output studs.</td>
<td>Check and correct any external voltage sources.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Short circuit across output studs.</td>
<td>Check and correct any short circuit conditions.</td>
<td></td>
</tr>
<tr>
<td>Low weld output. Single phase rating exceeded (output foldback due to excessive input current).</td>
<td>Reduce output to 200 amperes or less.</td>
<td></td>
</tr>
<tr>
<td>High output VA coupled with a low 230 voltage line (output foldback due to excessive input current).</td>
<td>Check line voltage and weld settings.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Remote trigger left on.</td>
<td>Turn off remote trigger, wait approximately 5 seconds, and restart operation.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Internal component failure.</td>
<td>Contact nearest Factory Authorized Service Agent.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Unit overheated.</td>
<td>Allow unit to cool.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Thermistor failure.</td>
<td>Have Factory Authorized Service Agent check thermistor.</td>
<td></td>
</tr>
<tr>
<td>No weld output. Blocked fan blade.</td>
<td>Check and remove anything blocking fan blade movement.</td>
<td></td>
</tr>
<tr>
<td>Fan not operating.</td>
<td>Fan failure.</td>
<td>Have Factory Authorized Service Agent check fan motor.</td>
</tr>
<tr>
<td>Trouble</td>
<td>Possible Causes</td>
<td>Remedy</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Erratic or improper weld output.</td>
<td>Weld cable too small or defective.</td>
<td>Use proper size and type of weld cable (see Section 3-6).</td>
</tr>
<tr>
<td></td>
<td>Dirty or loose connections.</td>
<td>Clean and tighten all weld connections (see Section 3-6).</td>
</tr>
<tr>
<td>Wandering arc</td>
<td>Improper size tungsten.</td>
<td>Use proper size tungsten (see Section 7).</td>
</tr>
<tr>
<td></td>
<td>Worn or defective tungsten.</td>
<td>Use properly prepared tungsten (see Section 7).</td>
</tr>
<tr>
<td></td>
<td>Shielding gas flow too high.</td>
<td>Reduce shielding gas flow rate (see Section 3-7).</td>
</tr>
<tr>
<td>Tungsten electrode oxidizing and not remaining bright after conclusion of weld.</td>
<td>Shielding gas blown away from weld zone.</td>
<td>Shield weld zone from drafts.</td>
</tr>
<tr>
<td></td>
<td>Inadequate postflow time.</td>
<td>Allow adequate postflow time to shield tungsten while it cools, after welding stops.</td>
</tr>
<tr>
<td></td>
<td>Loose or leaking gas fittings.</td>
<td>Check and tighten all gas fittings (see Section 3-7).</td>
</tr>
<tr>
<td></td>
<td>Water in torch.</td>
<td>Refer to torch manual.</td>
</tr>
</tbody>
</table>
SECTION 6 – ELECTRICAL DIAGRAMS

Figure 6-1. Circuit Diagram
SECTION 7 – SELECTING AND PREPARING TUNGSTEN ELECTRODE

NOTE

For additional information, see your distributor for a handbook on the Gas Tungsten Arc Welding (GTAW) process. Wear clean gloves to prevent contamination of tungsten electrode.

7-1. Selecting Tungsten Electrode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2% Thorium Alloped Tungsten (Red Band)</td>
<td>Up to 25</td>
<td>*</td>
<td>Up to 20</td>
<td>Up to 15</td>
</tr>
<tr>
<td>.010"</td>
<td>15-40</td>
<td>*</td>
<td>15-35</td>
<td>5-20</td>
</tr>
<tr>
<td>.020"</td>
<td>25-85</td>
<td>*</td>
<td>20-80</td>
<td>20-60</td>
</tr>
<tr>
<td>1/16"</td>
<td>50-160</td>
<td>10-20</td>
<td>50-150</td>
<td>60-120</td>
</tr>
<tr>
<td>3/32"</td>
<td>135-235</td>
<td>15-30</td>
<td>130-250</td>
<td>100-180</td>
</tr>
<tr>
<td>1/8"</td>
<td>250-400</td>
<td>25-40</td>
<td>225-360</td>
<td>160-250</td>
</tr>
<tr>
<td>5/32"</td>
<td>400-500</td>
<td>40-55</td>
<td>300-450</td>
<td>200-320</td>
</tr>
<tr>
<td>3/16"</td>
<td>500-750</td>
<td>55-80</td>
<td>400-500</td>
<td>290-390</td>
</tr>
<tr>
<td>1/4"</td>
<td>750-1000</td>
<td>80-125</td>
<td>600-800</td>
<td>340-525</td>
</tr>
</tbody>
</table>

♦ Typical argon shielding gas flow rates are 15 to 35 cfh (cubic feet per hour).

*Not Recommended.

The figures listed are intended as a guide and are a composite of recommendations from American Welding Society (AWS) and electrode manufacturers.

7-2. Safety Information About Tungsten

Grinding the tungsten electrode produces dust and flying sparks which can cause injury and start fires. Use local exhaust (forced ventilation) at the grinder or wear an approved respirator. Read MSDS for safety information. Consider using tungsten containing ceria, lanthana, or yttria instead of thoria. Grinding dust from thoriated electrodes contains low-level radioactive material. Properly dispose of grinder dust in an environmentally safe way. Wear proper face, hand, and body protection. Keep flammables away.

1 Tungsten Electrode With Balled End
2 Pointed Tungsten Electrode

Ref. S-0161
Preparing Tungsten For AC Or DC Electrode Negative (DCEN) Welding

1. **Tungsten Electrode**
2. **Tapered End**
 - Grind end of tungsten on fine grit, hard abrasive wheel before welding. Do not use wheel for other jobs or tungsten can become contaminated causing lower weld quality.

Ideal Tungsten Preparation – Stable Arc

1. **Stable Arc**
2. **Flat**
 - Diameter of this flat determines amperage capacity.
3. **Grinding Wheel**
 - Grinding wheel should be dedicated to grinding tungsten only.
4. **Straight Ground**

Wrong Tungsten Preparation – Wandering Arc

1. **Arc Wander**
2. **Point**
3. **Grinding Wheel**
 - Grinding wheel should be dedicated to grinding tungsten only.
4. **Radial Ground**

Ref. S-0161 / Ref. S-0162
Hardware is common and not available unless listed.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205758</td>
<td>PANEL,FRONT W/CMPNT</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>205780</td>
<td>PANEL,REAR W/CMPNT</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>206037</td>
<td>MAGNETICS SUBASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>206090</td>
<td>HEAT SINK ASSEMBLY,OUTPUT DIODE</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>206039</td>
<td>BASE ASSY</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>206093</td>
<td>BRACKET,MTG CAPACITORS</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>206038</td>
<td>HEAT SINK ASSEMBLY,INPUT</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>206164</td>
<td>COVER,TOP</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>206165</td>
<td>PANEL,SIDE LH</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>206166</td>
<td>PANEL,SIDE RH</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>207437</td>
<td>CABLE,POWER 6 FT 10GA 4C BLK/RED/WHT/GRNYEL</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>206108</td>
<td>HANDLE,RUBBERIZED CARRYING</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>206289</td>
<td>LINK,CONNECTING</td>
<td>1</td>
</tr>
<tr>
<td>14 PLG3</td>
<td>206247</td>
<td>PLUGS,W/LEADS</td>
<td>1</td>
</tr>
<tr>
<td>15 PLG4</td>
<td>206254</td>
<td>PLUGS,W/LEADS</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>196231</td>
<td>XFMR,CURRENT SENSING 200/1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>206269</td>
<td>INSULATOR,SIDE LH</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>206270</td>
<td>INSULATOR,SIDE RH</td>
<td>1</td>
</tr>
<tr>
<td>19 PLG5</td>
<td>206276</td>
<td>CABLE,LEM W/PLUGS</td>
<td>1</td>
</tr>
<tr>
<td>20 C1,C2</td>
<td>203912</td>
<td>CAPACITOR,ELCTLT 2400 UF 500 VDC CAN 2.5 DIA</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>205908</td>
<td>CLAMP,CAPACITOR 2.500 DIA HORIZONTAL MTG NYLON</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>189777</td>
<td>RAIL, HEAT SINK</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>134327</td>
<td>LABEL,WARNING GENERAL PRECAUTIONARY STATIC&WIRE FE</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>185835</td>
<td>LABEL,WARNING ELECTRIC SHOCK/EXPLODING PARTS</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>182826</td>
<td>LABEL,WARNING ELECTRIC SHOCK POWER CORD</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>180994</td>
<td>LABEL,WARNING MATCH INPUT POWER TO VOLTAGE SHOWN</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>222446</td>
<td>KIT,CIRCUIT CARD ASSY POWER INTERCONNECT</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>205772</td>
<td>CIRCUIT CARD ASSY,POWER CONTROL</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>205776</td>
<td>CIRCUIT CARD ASSY,RELINK</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>176879</td>
<td>SCREW,M 5−.8X 12 HEX HD−PHL</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>200550</td>
<td>SCREW,M10−1.5X 20 HEX HD−PLN 8.8 PLD SEMS</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>207113</td>
<td>WASHER,CONE .205IDX0.394IDX0.015T STL</td>
<td>2</td>
</tr>
</tbody>
</table>

+When ordering a component originally displaying a precautionary label, the label should also be ordered.

To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.
To maintain the factory original performance of your equipment, use only Manufacturer's Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.
Hardware is common and not available unless listed.

Figure 8-3. Panel, Rear w/Components

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194242</td>
<td>PANEL,FRONT/REAR</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>206052</td>
<td>PANEL,REAR UPPER</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>206053</td>
<td>PANEL,REAR LOWER</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>210128</td>
<td>BRACKET,HEATSINK</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>145217</td>
<td>SCREW,K40X 12 PAN HD–PHL</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>207253</td>
<td>BLANK,HEX HOLE BLACK</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>201155</td>
<td>BUSHING,STRAIN RELIEF .450/.709 ID X1.068 MTG HOLE</td>
<td>1</td>
</tr>
</tbody>
</table>

To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.
Hardware is common and not available unless listed.

To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.

Figure 8-4. Magnetics Subassembly

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Diagram marking</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>206063</td>
<td>PANEL, PLENUM</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>T1</td>
<td>206065</td>
<td>XFMR, HF LITZ/LITZ W/BOOST</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>FM</td>
<td>196887</td>
<td>FAN, MUFFIN 24VDC 3000 RPM 130 CFM 4.125 MTG HOLES</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Z1</td>
<td>206064</td>
<td>INDUCTOR, OUTPUT</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CR1</td>
<td>206258</td>
<td>RELAY, ENCL 24VDC SPST 30A/240VAC 4PIN FLANGE MTG</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>R3</td>
<td>206281</td>
<td>RESISTOR, W/LEADS</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>C3</td>
<td>196143</td>
<td>CAPACITOR, POLYP MET FILM 16. UF 400 VAC 10%</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>057357</td>
<td>BUSHING, SNAP–IN NYL .937 ID X 1.125 MTG HOLE</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>109056</td>
<td>CORE, FERRITE E 2.164 LG X 1.094 HIGH X .826 WIDE</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>L3</td>
<td>206273</td>
<td>COIL, INDUCTOR (BOOST)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>196514</td>
<td>GASKET, INDUCTOR MOUNTING</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>196512</td>
<td>Bracket, Inductor Mounting</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>198634</td>
<td>Bracket, Front Heatsink Mounting</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>083147</td>
<td>GROMMET, SCR NO 8/10 PANEL HOLE .312 SQ .500 HIGH</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>136343</td>
<td>SCREW, K50X 20 PAN HD–PHL</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>170647</td>
<td>BUSHING, SNAP–IN NYL 1.312 ID X 1.500 MTG HOLE</td>
<td>1</td>
</tr>
</tbody>
</table>

803 163-B
Hardware is common and not available unless listed.

Figure 8-5. Heat Sink Assembly, Output Diode

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Diagram marking</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>205916</td>
<td>HEAT SINK, DIODE OUTPUT</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>223422</td>
<td>KIT, DIODE ULTRA–FAST RECOVERY</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>SR1</td>
<td>201530</td>
<td>KIT, DIODE FAST RECOVERY BRIDGE</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>HD1</td>
<td>191941</td>
<td>TRANSDUCER, CURRENT</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>R2, C6</td>
<td>196510</td>
<td>RESISTOR/CAPACITOR</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>R1, C5</td>
<td>207384</td>
<td>RESISTOR/CAPACITOR</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>RT1</td>
<td>209223</td>
<td>THERMISTOR, NTC 30K OHM @ 25 DEG C 18IN LEAD</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>049611</td>
<td>TUBING, COP .540 OD X .123 WALL X .687</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>207932</td>
<td>INSULATOR, HEATSINK</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>108942</td>
<td>SCREW, 250–20X1.25 HEXWHD.61D GR5 PLD</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>602062</td>
<td>SCREW, 004–40X .37 PAN HD–PHL STL PLD CONE SEMS</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>070427</td>
<td>SCREW, 008–32X .50 SOC HD–HEX GR8 PLD</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>602200</td>
<td>WASHER, LOCK .168IDX0.293ODX.040T STL PLD SPLIT #8</td>
<td>7</td>
</tr>
</tbody>
</table>

To maintain the factory original performance of your equipment, use only Manufacturer’s Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.
Hardware is common and not available unless listed.

To maintain the factory original performance of your equipment, use only Manufacturer's Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.

<table>
<thead>
<tr>
<th>Item</th>
<th>Diagram marking</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>206089</td>
<td>BASE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>019663</td>
<td>MOUNT, NPRN 15/16ODX3/8REC 3/16X3/8</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>186543</td>
<td>CAPACITOR ASSY</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>133528</td>
<td>RIVET, AL .125 DIA X .188-.250 GRIP BLK BLIND DOME</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>195666</td>
<td>SCREW, 010-32X .62 HEXWHD.40D STL PLD SLFFMG TAP-RW</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>601862</td>
<td>NUT, 010-32 .38HEX .13H STL PLD</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>602203</td>
<td>WASHER, LOCK .193IDX0.334ODX.047T STL PLD SPLIT #10</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>602238</td>
<td>WASHER, FLAT .203IDX0.500ODX.048T STL PLD ANSI#10</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 8-6. Base Assembly
Hardware is common and not available unless listed.

![Heat Sink Assembly, Input Diagram](image-url)

<table>
<thead>
<tr>
<th>Item</th>
<th>Diagram marking</th>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>205915</td>
<td>HEAT SINK,IGBT/INPUT RECTIFIER MODULE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>206091</td>
<td>BRACKET,HEATSINK REAR</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>206328</td>
<td>BLOCK,TERM 70 AMP 3 POLE SCREW TERM 4–14 WIRE</td>
<td>1</td>
</tr>
</tbody>
</table>

To maintain the factory original performance of your equipment, use only Manufacturer's Suggested Replacement Parts. Model and serial number required when ordering parts from your local distributor.
LIMITED WARRANTY – Subject to the terms and conditions below, Miller Electric Mfg. Co., Appleton, Wisconsin, warrants to its original retail purchaser that new Miller equipment sold after the effective date of this limited warranty is free of defects in material and workmanship at the time it is shipped by Miller. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS.

Within the warranty periods listed below, Miller will repair or replace any warranted parts or components that fail due to such defects in material or workmanship. Miller must be notified in writing within thirty (30) days of such defect or failure, at which time Miller will provide instructions on the warranty claim procedures to be followed.

Miller shall honor warranty claims on warranted equipment listed below in the event of such a failure within the warranty time periods. All warranty time periods start on the date that the equipment was delivered to the original retail purchaser, or one year after the equipment is sent to a North American distributor or eighteen months after the equipment is sent to an international distributor.

1. 5 Years Parts — 3 Years Labor
 - Original main power rectifiers
 - Inverters (input and output rectifiers only)
2. 3 Years — Parts and Labor
 - Transformer/Rectifier Power Sources
 - Plasma Arc Cutting Power Sources
 - Semi-Automatic and Automatic Wire Feeders
 - Inverter Power Sources (Unless Otherwise Stated)
 - Water Coolant Systems (Integrated)
 - Intelligent
 - Maxstar 150
 - Engine Driven Welding Generators (NOTE: Engines are warranted separately by the engine manufacturer.)
3. 1 Year — Parts and Labor Unless Specified
 - DS-2 Wire Feeder
 - Motor Driven Guns (w/exception of Spoolmate Spoolguns)
 - Process Controllers
 - Positioners and Controllers
 - Automatic Motion Devices
 - RFCS Foot Controls
 - Induction Heating Power Sources and Coolers
 - Water Coolant Systems (Non-Integrated)
 - Flowgauge and Flowmeter Regulators (No Labor)
 - HF Units
 - Grids
 - Maxstar 85, 140
 - Spot Welders
 - Load Banks
 - Arc Stud Power Sources & Arc Stud Guns
 - Racks
 - Running Gear/Trailers
 - Plasma Cutting Torches (except APT & SAF Models)
 - Field Options (NOTE: Field options are covered under True Blue® for the remaining warranty period of the product they are installed in, or for a minimum of one year — whichever is greater.)
4. 6 Months — Batteries
5. 90 Days — Parts
 - MG Guns/TIG Torches
 - Induction Heating Coils and Blankets
 - APT & SAF Model Plasma Cutting Torches
 - Remote Controls
 - Accessory Kits
 - Replacement Parts (No labor)
 - Spoolmate Spoolguns
 - Canvas Covers

Miller’s True Blue® Limited Warranty shall not apply to:

1. Consumable components; such as contact tips, cutting nozzles, contactors, brushes, slip rings, relays or parts that fail due to normal wear. (Exception: brushes, slip rings, and relays are covered on Bobcat, Trailblazer, and Legend models.)
2. Items furnished by Miller, but manufactured by others, such as engines or trade accessories. These items are covered by the manufacturer’s warranty, if any.
3. Equipment that has been modified by any party other than Miller, or equipment that has been improperly installed, improperly operated or misused based upon industry standards, or equipment which has not had reasonable and necessary maintenance, or equipment which has been used for operation outside of the specifications for the equipment.

MILLER PRODUCTS ARE INTENDED FOR PURCHASE AND USE BY COMMERCIAL/INDUSTRIAL USERS AND PERSONS TRAINED AND EXPERIENCED IN THE USE AND MAINTENANCE OF WELDING EQUIPMENT.

In the event of a warranty claim covered by this warranty, the exclusive remedies shall be, at Miller’s option: (1) repair; or (2) replacement; or, where authorized in writing by Miller in appropriate cases, (3) the reasonable cost of repair or replacement at an authorized Miller service station; or (4) payment of or credit for the purchase price (less reasonable depreciation based upon actual use) upon return of the goods at customer’s risk and expense. Miller’s option of repair or replacement will be F.O.B., Factory at Appleton, Wisconsin, or F.O.B. at a Miller authorized service facility as determined by Miller. Therefore no compensation or reimbursement for transportation costs of any kind will be allowed.

TO THE EXTENT PERMITTED BY LAW, THE REMEDIES PROVIDED HEREIN ARE THE SOLE AND EXCLUSIVE REMEDIES, IN NO EVENT SHALL MILLER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF PROFIT), WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

ANY EXPRESS WARRANTY NOT PROVIDED HEREIN AND ANY IMPLIED WARRANTY, GUARANTY OR REPRESENTATION AS TO PERFORMANCE, AND ANY REMEDY FOR BREACH OF CONTRACT TORT OR ANY OTHER LEGAL THEORY WHICH, BUT FOR THIS PROVISION, MIGHT ARISE BY IMPLICATION, OPERATION OF LAW, CUSTOM OF TRADE OR COURSE OF DEALING, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE, WITH RESPECT TO ANY AND ALL EQUIPMENT FURNISHED BY MILLER IS EXCLUDED AND DISCLAIMED BY MILLER.

Some states in the U.S.A. do not allow limitations of how long an implied warranty lasts, or the exclusion of incidental, indirect, special or consequential damages, so the above limitation or exclusion may not apply to you. This warranty provides specific legal rights, and other rights may be available, but may vary from state to state.

In Canada, legislation in some provinces provides for certain additional warranties or remedies other than as stated herein, and to the extent that they may not be waived, the limitations and exclusions set out above may not apply. This Limited Warranty provides specific legal rights, and other rights may be available, but may vary from province to province.

Call 1-800-4-A-MILLER for your local Miller distributor.

Your distributor also gives you...

Service
You always get the fast, reliable response you need. Most replacement parts can be in your hands in 24 hours.

Support
Need fast answers to the tough welding questions? Contact your distributor. The expertise of the distributor and Miller is there to help you, every step of the way.

Warranty Questions?

Effective January 1, 2005
(Equipment with a serial number prefix of “LF” or newer)

This limited warranty supersedes all previous Miller warranties and is exclusive with no other guarantees or warranties expressed or implied.
Owner’s Record

Please complete and retain with your personal records.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Serial/Style Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>(Date which equipment was delivered to original customer.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Service

Contact a DISTRIBUTOR or SERVICE AGENCY near you.

Always provide Model Name and Serial/Style Number.

Contact your Distributor for:

- Welding Supplies and Consumables
- Options and Accessories
- Personal Safety Equipment
- Service and Repair
- Replacement Parts
- Training (Schools, Videos, Books)
- Technical Manuals (Servicing Information and Parts)
- Circuit Diagrams
- Welding Process Handbooks

To locate a Distributor or Service Agency visit www.millerwelds.com or call 1-800-4-A-Miller

Contact the Delivering Carrier to:

File a claim for loss or damage during shipment.

For assistance in filing or settling claims, contact your distributor and/or equipment manufacturer’s Transportation Department.